Bayesian composite Lp-quantile regression

被引:0
|
作者
Arnroth, Lukas [1 ]
机构
[1] Uppsala Univ, Dept Stat, Uppsala, Sweden
关键词
Skewed exponential power distribution; L-P-quantile regression; Markov chain Monte Carlo; RISK MEASURES; SELECTION;
D O I
10.1007/s00184-024-00950-8
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
L-P-quantiles are a class of generalized quantiles defined as minimizers of an asymmetric power function. They include both quantiles, P = 1, and expectiles, P = 2, as special cases. This paper studies composite L-P-quantile regression, simultaneously extending single L-P-quantile regression and composite quantile regression. A Bayesian approach is considered, where a novel parameterization of the skewed exponential power distribution is utilized. Further, a Laplace prior on the regression coefficients allows for variable selection. Through a Monte Carlo study and applications to empirical data, the proposed method is shown to outperform Bayesian composite quantile regression in most aspects.
引用
收藏
页码:83 / 97
页数:15
相关论文
共 50 条
  • [21] Bayesian quantile regression for single-index models
    Yuao Hu
    Robert B. Gramacy
    Heng Lian
    Statistics and Computing, 2013, 23 : 437 - 454
  • [22] Bayesian analysis of penalized quantile regression for longitudinal data
    Aghamohammadi, A.
    Mohammadi, S.
    STATISTICAL PAPERS, 2017, 58 (04) : 1035 - 1053
  • [23] Bayesian quantile regression for partially linear additive models
    Yuao Hu
    Kaifeng Zhao
    Heng Lian
    Statistics and Computing, 2015, 25 : 651 - 668
  • [24] The Expectation-Maximization approach for Bayesian quantile regression
    Zhao, Kaifeng
    Lian, Heng
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 96 : 1 - 11
  • [25] Bayesian quantile regression for single-index models
    Hu, Yuao
    Gramacy, Robert B.
    Lian, Heng
    STATISTICS AND COMPUTING, 2013, 23 (04) : 437 - 454
  • [26] Bayesian Tail Risk Interdependence Using Quantile Regression
    Bernardi, Mauro
    Gayraud, Ghislaine
    Petrella, Lea
    BAYESIAN ANALYSIS, 2015, 10 (03): : 553 - 603
  • [27] Bayesian Quantile Regression with Mixed Discrete and Nonignorable Missing Covariates
    Wang, Zhi-Qiang
    Tang, Nian-Sheng
    BAYESIAN ANALYSIS, 2020, 15 (02): : 579 - 604
  • [28] Bayesian CV@R/super-quantile regression
    Tsionas, Mike G.
    Izzeldin, Marwan
    JOURNAL OF APPLIED STATISTICS, 2018, 45 (16) : 2943 - 2957
  • [29] Bayesian Tobit quantile regression with single-index models
    Zhao, Kaifeng
    Lian, Heng
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2015, 85 (06) : 1247 - 1263
  • [30] Bayesian quantile regression joint models: Inference and dynamic predictions
    Yang, Ming
    Luo, Sheng
    DeSantis, Stacia
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2019, 28 (08) : 2524 - 2537