Bayesian composite Lp-quantile regression

被引:0
|
作者
Arnroth, Lukas [1 ]
机构
[1] Uppsala Univ, Dept Stat, Uppsala, Sweden
关键词
Skewed exponential power distribution; L-P-quantile regression; Markov chain Monte Carlo; RISK MEASURES; SELECTION;
D O I
10.1007/s00184-024-00950-8
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
L-P-quantiles are a class of generalized quantiles defined as minimizers of an asymmetric power function. They include both quantiles, P = 1, and expectiles, P = 2, as special cases. This paper studies composite L-P-quantile regression, simultaneously extending single L-P-quantile regression and composite quantile regression. A Bayesian approach is considered, where a novel parameterization of the skewed exponential power distribution is utilized. Further, a Laplace prior on the regression coefficients allows for variable selection. Through a Monte Carlo study and applications to empirical data, the proposed method is shown to outperform Bayesian composite quantile regression in most aspects.
引用
收藏
页码:83 / 97
页数:15
相关论文
共 50 条
  • [1] Communication-efficient low-dimensional parameter estimation and inference for high-dimensional LP-quantile regression
    Gao, Junzhuo
    Wang, Lei
    SCANDINAVIAN JOURNAL OF STATISTICS, 2024, 51 (01) : 302 - 333
  • [2] Bayesian Endogenous Tobit Quantile Regression
    Kobayashi, Genya
    BAYESIAN ANALYSIS, 2017, 12 (01): : 161 - 191
  • [3] Bayesian quantile regression for longitudinal count data
    Jantre, Sanket
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2023, 93 (01) : 103 - 127
  • [4] Bayesian Quantile Regression for Censored Data
    Reich, Brian J.
    Smith, Luke B.
    BIOMETRICS, 2013, 69 (03) : 651 - 660
  • [5] Bayesian Quantile Regression for Ordinal Models
    Rahman, Mohammad Arshad
    BAYESIAN ANALYSIS, 2016, 11 (01): : 1 - 24
  • [6] Bayesian quantile regression with approximate likelihood
    Feng, Yang
    Chen, Yuguo
    He, Xuming
    BERNOULLI, 2015, 21 (02) : 832 - 850
  • [7] Local Composite Quantile Regression for Regression Discontinuity
    Huang, Xiao
    Zhan, Zhaoguo
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2022, 40 (04) : 1863 - 1875
  • [8] Bayesian relative composite quantile regression with ordinal longitudinal data and some case studies
    Tian, Yu-Zhu
    Wu, Chun-Ho
    Tang, Man-Lai
    Tian, Mao-Zai
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2024, 94 (10) : 2320 - 2345
  • [9] Estimation of value-at-risk by Lp quantile regression
    Sun, Peng
    Lin, Fuming
    Xu, Haiyang
    Yu, Kaizhi
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2025, 77 (01) : 25 - 59
  • [10] Bayesian quantile regression for longitudinal data models
    Luo, Youxi
    Lian, Heng
    Tian, Maozai
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2012, 82 (11) : 1635 - 1649