Stability of the Rao-Nakra Sandwich Beam With a Dissipation of Fractional Derivative Type: Theoretical and Numerical Study

被引:0
作者
Ammari, K. [1 ]
Komornik, V. [2 ]
Sepulveda, M. [3 ,4 ]
Vera, O. [5 ]
机构
[1] Univ Monastir, Fac Sci Monastir, Dept Math, LR 22ES03,LR Anal & Control PDEs, Monastir, Tunisia
[2] Univ Strasbourg, Dept Math, Strasbourg, France
[3] Univ Concepcion, DIM, Concepcion, Chile
[4] Univ Concepcion, CI2MA, Concepcion, Chile
[5] Univ Tarapaca, Dept Matemat, Arica, Chile
关键词
fractional derivative; numerical polynomial stability; Rao-Nakra sandwich beam; BOUNDARY DISSIPATION; DECAY; EQUATIONS;
D O I
10.1002/mma.10707
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to the solution and stability of a one-dimensional model depicting Rao-Nakra sandwich beams, incorporating damping terms characterized by fractional derivative types within the domain, specifically a generalized Caputo derivative with exponential weight. To address existence, uniqueness, stability, and numerical results, fractional derivatives are substituted by diffusion equations relative to a new independent variable, xi$$ \xi $$, resulting in an augmented model with a dissipative semigroup operator. Polynomial decay of energy is achieved, with a decay rate depending on the fractional derivative parameters. Both the polynomial decay and its dependency on the parameters of the generalized Caputo derivative are numerically validated. To this end, an energy-conserving finite difference numerical scheme is employed.
引用
收藏
页码:6678 / 6690
页数:13
相关论文
共 40 条
  • [21] Magin Richard L., 2004, Critical Reviews in Biomedical Engineering, V32, P1, DOI 10.1615/CritRevBiomedEng.v32.10
  • [22] Asymptotic Behavior in a Laminated Beams Due Interfacial Slip with a Boundary Dissipation of Fractional Derivative Type
    Maryati, Tita
    Munoz Rivera, Jaime
    Poblete, Veronica
    Vera, Octavio
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 84 (01) : 85 - 102
  • [23] BOUNDARY FRACTIONAL DERIVATIVE CONTROL OF THE WAVE-EQUATION
    MBODJE, B
    MONTSENY, G
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1995, 40 (02) : 378 - 382
  • [24] Wave energy decay under fractional derivative controls
    Mbodje, Brahima
    [J]. IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2006, 23 (02) : 237 - 257
  • [25] Newmark N. M., 1985, J ENG MECH DIV, V85, P67, DOI [DOI 10.1061/JMCEA3.0000098, 10.1061/JMCEA3.0000098]
  • [26] UNIFORM STABILIZATION OF A MULTILAYER RAO-NAKRA SANDWICH BEAM
    Oezer, A. Oezkan
    Hansen, Scott W.
    [J]. EVOLUTION EQUATIONS AND CONTROL THEORY, 2013, 2 (04): : 695 - 710
  • [27] EXACT BOUNDARY CONTROLLABILITY RESULTS FOR A MULTILAYER RAO-NAKRA SANDWICH BEAM
    Oezer, A. Oezkan
    Hansen, Scott W.
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2014, 52 (02) : 1314 - 1337
  • [28] Ortigueira M.D., 2004, Fractional Calculus and Applied Analysis, V7, P459
  • [29] Pazy A., 1983, SEMIGROUPS LINEAR OP
  • [30] Polynomial stability of a piezoelectric beam with magnetic effect and a boundary dissipation of the fractional derivative type
    Poblete, Veronica
    Toledo, Fernando
    Vera, Octavio
    [J]. PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2023, 66 (01) : 23 - 53