Existence of normalized solutions for a Sobolev supercritical Schrodinger equation

被引:0
作者
Li, Quanqing [1 ]
Yang, Zhipeng [2 ]
机构
[1] Honghe Univ, Dept Math, Mengzi 661100, Peoples R China
[2] Yunnan Normal Univ, Dept Math, Kunming 650500, Peoples R China
来源
ELECTRONIC RESEARCH ARCHIVE | 2024年 / 32卷 / 12期
基金
中国国家自然科学基金;
关键词
normalized solution; truncation technique; Sobolev supercritical growth; POSITIVE SOLUTIONS; GROUND-STATES;
D O I
10.3934/era.2024316
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper studies the existence of normalized solutions for the following Schrodinger equation with Sobolev supercritical growth: {-triangle u + V(x)u + lambda u = f (u) + mu |u|(p-2)u , in R-N, integral(RN) |u|(2)dx = a(2), where p > 2* := 2N/N- 2, N >= 3, a > 0, lambda is an element of R is an unknown Lagrange multiplier, V is an element of C (R-N, R), f satisfies weak mass subcritical conditions. By employing the truncation technique, we establish the existence of normalized solutions to this Sobolev supercritical problem. Our primary contribution lies in our initial exploration of the case p > 2*, which represents an unfixed frequency problem.
引用
收藏
页码:6761 / 6771
页数:11
相关论文
共 50 条
[41]   Multiple radial and nonradial normalized solutions for a quasilinear Schrodinger equation [J].
Yang, Xianyong ;
Tang, Xianhua ;
Cheng, Bitao .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 501 (02)
[42]   Existence of normalized solutions for nonlinear fractional Schrodinger equations with trapping potentials [J].
Du, Miao ;
Tian, Lixin ;
Wang, Jun ;
Zhang, Fubao .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2019, 149 (03) :617-653
[43]   Normalized solutions to fractional mass supercritical NLS systems with Sobolev critical nonlinearities [J].
Zuo, Jiabin ;
Radulescu, Vicentiu D. .
ANALYSIS AND MATHEMATICAL PHYSICS, 2022, 12 (06)
[44]   Normalized solutions to fractional mass supercritical NLS systems with Sobolev critical nonlinearities [J].
Jiabin Zuo ;
Vicenţiu D. Rădulescu .
Analysis and Mathematical Physics, 2022, 12
[45]   Normalized solutions for Schrodinger system with quadratic and cubic interactions [J].
Luo, Xiao ;
Wei, Juncheng ;
Yang, Xiaolong ;
Zhen, Maoding .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 314 :56-127
[46]   Existence and multiplicity solutions of fractional Schrodinger equation with competing potential functions [J].
Shang, Xudong ;
Zhang, Jihui .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2016, 61 (11) :1435-1463
[47]   Normalized solutions to nonlocal Schrodinger systems with L2-sub critical and supercritical nonlinearities [J].
Hu, Jiaqing ;
Mao, Anmin .
JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2023, 25 (03)
[48]   A mass supercritical and critical Sobolev fractional Schrodinger system [J].
Liu, Mei-Qi ;
Li, Quanqing .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (03) :3356-3370
[49]   NORMALIZED SOLUTIONS TO p-LAPLACIAN EQUATION: SOBOLEV CRITICAL CASE [J].
Lou, Qingjun ;
Zhang, Xiaoyan ;
Zhang, Zhitao .
TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2024, 64 (02) :409-439
[50]   Existence and concentration of positive solutions for a Schrodinger logarithmic equation [J].
Alves, Claudianor O. ;
de Morais Filho, Daniel C. .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (06)