Existence of normalized solutions for a Sobolev supercritical Schrodinger equation

被引:0
作者
Li, Quanqing [1 ]
Yang, Zhipeng [2 ]
机构
[1] Honghe Univ, Dept Math, Mengzi 661100, Peoples R China
[2] Yunnan Normal Univ, Dept Math, Kunming 650500, Peoples R China
来源
ELECTRONIC RESEARCH ARCHIVE | 2024年 / 32卷 / 12期
基金
中国国家自然科学基金;
关键词
normalized solution; truncation technique; Sobolev supercritical growth; POSITIVE SOLUTIONS; GROUND-STATES;
D O I
10.3934/era.2024316
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper studies the existence of normalized solutions for the following Schrodinger equation with Sobolev supercritical growth: {-triangle u + V(x)u + lambda u = f (u) + mu |u|(p-2)u , in R-N, integral(RN) |u|(2)dx = a(2), where p > 2* := 2N/N- 2, N >= 3, a > 0, lambda is an element of R is an unknown Lagrange multiplier, V is an element of C (R-N, R), f satisfies weak mass subcritical conditions. By employing the truncation technique, we establish the existence of normalized solutions to this Sobolev supercritical problem. Our primary contribution lies in our initial exploration of the case p > 2*, which represents an unfixed frequency problem.
引用
收藏
页码:6761 / 6771
页数:11
相关论文
共 50 条
[31]   Existence and multiplicity of solutions for Schrodinger equation with inverse square potential and Hardy-Sobolev critical exponent [J].
Wang, Cong ;
Shang, Yan-Ying .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2019, 46 :525-544
[32]   Existence and asymptotic properties of normalized solutions for nonlinear Schrodinger systems [J].
Qin, Jian ;
Zhang, Zhitao .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 552 (02)
[33]   Normalized Solutions of Mass Supercritical Kirchhoff Equation with Potential [J].
Li Cai ;
Fubao Zhang .
The Journal of Geometric Analysis, 2023, 33
[34]   Normalized Solutions of Mass Supercritical Kirchhoff Equation with Potential [J].
Cai, Li ;
Zhang, Fubao .
JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (03)
[35]   Normalized Solutions for Schrodinger-Poisson Systems Involving Critical Sobolev Exponents [J].
Gao, Qian ;
He, Xiaoming .
JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (10)
[36]   Existence of solutions for elliptic equation with critical Sobolev exponent [J].
Xiu, Zonghu .
MECHATRONICS AND APPLIED MECHANICS II, PTS 1 AND 2, 2013, 300-301 :1205-1208
[37]   The existence of normalized solutions to the fractional Kirchhoff equation with potentials [J].
Ji, Peng ;
Chen, Fangqi .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 546 (02)
[38]   Existence of Solutions to Quasilinear Schrodinger Equations Involving Critical Sobolev Exponent [J].
Wang, Youjun ;
Li, Zhouxin .
TAIWANESE JOURNAL OF MATHEMATICS, 2018, 22 (02) :401-420
[39]   Normalized solutions for the fractional Schrodinger equation with a focusing nonlocal perturbation [J].
Li, Gongbao ;
Luo, Xiao ;
Yang, Tao .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (13) :10331-10360
[40]   Bound state solutions for the supercritical fractional Schrodinger equation [J].
Ao, Weiwei ;
Chan, Hardy ;
del Mar Gonzalez, Maria ;
Wei, Juncheng .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 193