Existence of normalized solutions for a Sobolev supercritical Schrodinger equation

被引:0
作者
Li, Quanqing [1 ]
Yang, Zhipeng [2 ]
机构
[1] Honghe Univ, Dept Math, Mengzi 661100, Peoples R China
[2] Yunnan Normal Univ, Dept Math, Kunming 650500, Peoples R China
来源
ELECTRONIC RESEARCH ARCHIVE | 2024年 / 32卷 / 12期
基金
中国国家自然科学基金;
关键词
normalized solution; truncation technique; Sobolev supercritical growth; POSITIVE SOLUTIONS; GROUND-STATES;
D O I
10.3934/era.2024316
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper studies the existence of normalized solutions for the following Schrodinger equation with Sobolev supercritical growth: {-triangle u + V(x)u + lambda u = f (u) + mu |u|(p-2)u , in R-N, integral(RN) |u|(2)dx = a(2), where p > 2* := 2N/N- 2, N >= 3, a > 0, lambda is an element of R is an unknown Lagrange multiplier, V is an element of C (R-N, R), f satisfies weak mass subcritical conditions. By employing the truncation technique, we establish the existence of normalized solutions to this Sobolev supercritical problem. Our primary contribution lies in our initial exploration of the case p > 2*, which represents an unfixed frequency problem.
引用
收藏
页码:6761 / 6771
页数:11
相关论文
共 50 条
[21]   Existence and stability of normalized solutions to the mixed dispersion nonlinear Schrodinger equations [J].
Luo, Haijun ;
Zhang, Zhitao .
ELECTRONIC RESEARCH ARCHIVE, 2022, 30 (08) :2871-2898
[22]   THE EXISTENCE AND STABILITY OF NORMALIZED SOLUTIONS FOR A BI-HARMONIC NONLINEAR SCHRODINGER EQUATION WITH MIXED DISPERSION [J].
Luo, Tingjian ;
Zheng, Shijun ;
Zhu, Shihui .
ACTA MATHEMATICA SCIENTIA, 2023, 43 (02) :539-563
[23]   Existence and asymptotic behaviors of normalized solutions for Kirchhoff equations with critical Sobolev exponent [J].
Li, Yuhua ;
Li, Xiaoting .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 547 (01)
[24]   NORMALIZED SOLUTIONS FOR SOBOLEV CRITICAL SCHRODINGER-BOPP-PODOLSKY SYSTEMS [J].
Li, Yuxin ;
Chang, Xiaojun ;
Feng, Zhaosheng .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 2023 (56) :1-19
[25]   Normalized Solutions for a Sobolev Critical Fractional Schrodinger-Poisson System [J].
He, Xiaoming ;
Melgaard, Michael .
JOURNAL OF GEOMETRIC ANALYSIS, 2025, 35 (07)
[26]   NORMALIZED SOLUTIONS FOR A NONLINEAR SCHRODINGER EQUATION VIA A FIXED POINT THEOREM [J].
Tao, Mengfei ;
Zhang, Binlin .
JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2025, 9 (03) :357-371
[27]   Normalized solutions for logarithmic Schrodinger equation with a perturbation of power law nonlinearity [J].
Shuai, Wei ;
Yang, Xiaolong .
ANNALES FENNICI MATHEMATICI, 2025, 50 (01) :301-330
[28]   Normalized solutions for the fractional Schrodinger equation with combined nonlinearities [J].
Deng, Shengbing ;
Wu, Qiaoran .
FORUM MATHEMATICUM, 2024, 36 (06) :1667-1686
[29]   Multiplicity of Normalized Solutions for Schrodinger Equation with Mixed Nonlinearity [J].
Xu, Lin ;
Song, Changxiu ;
Xie, Qilin .
TAIWANESE JOURNAL OF MATHEMATICS, 2024, 28 (03) :589-609
[30]   EXISTENCE AND NON-EXISTENCE OF NORMALIZED SOLUTIONS FOR A NONLINEAR FRACTIONAL SCHRODINGER SYSTEM [J].
Liu, Chungen ;
Zhang, Zhigao ;
Zuo, Jiabin .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2025, 24 (10) :1830-1860