Existence of normalized solutions for a Sobolev supercritical Schrodinger equation

被引:0
|
作者
Li, Quanqing [1 ]
Yang, Zhipeng [2 ]
机构
[1] Honghe Univ, Dept Math, Mengzi 661100, Peoples R China
[2] Yunnan Normal Univ, Dept Math, Kunming 650500, Peoples R China
来源
ELECTRONIC RESEARCH ARCHIVE | 2024年 / 32卷 / 12期
基金
中国国家自然科学基金;
关键词
normalized solution; truncation technique; Sobolev supercritical growth; POSITIVE SOLUTIONS; GROUND-STATES;
D O I
10.3934/era.2024316
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper studies the existence of normalized solutions for the following Schrodinger equation with Sobolev supercritical growth: {-triangle u + V(x)u + lambda u = f (u) + mu |u|(p-2)u , in R-N, integral(RN) |u|(2)dx = a(2), where p > 2* := 2N/N- 2, N >= 3, a > 0, lambda is an element of R is an unknown Lagrange multiplier, V is an element of C (R-N, R), f satisfies weak mass subcritical conditions. By employing the truncation technique, we establish the existence of normalized solutions to this Sobolev supercritical problem. Our primary contribution lies in our initial exploration of the case p > 2*, which represents an unfixed frequency problem.
引用
收藏
页码:6761 / 6771
页数:11
相关论文
共 50 条