Advancing Natural Killer Cell Therapy: Genetic Engineering Strategies for Enhanced Cancer Immunotherapy

被引:1
作者
Park, Joo Dong [1 ]
Shin, Ha Eun [2 ]
An, Yeon Su [1 ]
Jang, Hye Jung [1 ]
Park, Juwon [2 ]
Kim, Se-Na [3 ,4 ]
Park, Chun Gwon [5 ,6 ,7 ]
Park, Wooram [1 ,7 ,8 ]
机构
[1] Sungkyunkwan Univ, Coll Biotechnol & Bioengn, Dept Integrat Biotechnol, 2066 Seobu Ro, Suwon 16419, South Korea
[2] Univ Hawai?i Manoa, John A Burns Sch Med, Dept Trop Med Med Microbiol & Pharmacol, Honolulu, HI USA
[3] Chungbuk Natl Univ, Dept Ind Cosmet Sci, Cheongju, South Korea
[4] MediArk Inc, Res & Dev Ctr, Cheongju, South Korea
[5] Sungkyunkwan Univ, Inst Cross Disciplinary Studies, Dept Biomed Engn, Suwon, South Korea
[6] Sungkyunkwan Univ, Inst Cross Disciplinary Studies, Dept Intelligent Precis Healthcare Convergence, Suwon, South Korea
[7] Korea Inst Sci & Technol, Seoul, South Korea
[8] Sungkyunkwan Univ, Inst Cross Disciplinary Studies, Dept MetaBioHlth, Suwon, South Korea
基金
新加坡国家研究基金会;
关键词
Key Words; Cell therapy; Genetic engineering; Immunotherapy; Nanoparticle delivery; Natural killer cells; NK CELLS; NK-92; CELLS; T-CELLS; GROWTH;
D O I
10.3343/alm.2024.0380
中图分类号
R446 [实验室诊断]; R-33 [实验医学、医学实验];
学科分类号
1001 ;
摘要
Natural killer (NK) cells are pivotal innate immune system components that exhibit spontaneous cytolytic activity against abnormal cells, such as infected and tumor cells. NK cells have shown significant promise in adoptive cell therapy because of their favorable safety profiles and minimal toxicity in clinical settings. Despite their advantages, the therapeutic application of unmodified NK cells faces challenges, including limited in vivo persistence, particularly in the immunosuppressive tumor microenvironment. Recent advances in genetic engineering have enhanced the therapeutic potential of NK cells by addressing these limitations and improving their therapeutic efficacy. In this review, we have described various methodologies for the genetic modification of NK cells, including viral vectors, electroporation, and nanoparticle-based approaches. The ongoing research on nanomaterialbased approaches highlights their potential to overcome current limitations in NK cell therapy, paving the way for advanced cancer therapy and improved clinical outcomes. In this review, we also emphasize the potential of engineered NK cells in cancer immunotherapy and other clinical applications, highlighting the expanding scope of NK cell-based treatments and the critical role of innovative genetic engineering techniques.
引用
收藏
页码:146 / 159
页数:14
相关论文
共 100 条
[1]  
Adjei Isaac M., 2019, Journal of Interdisciplinary Nanomedicine, V4, P98, DOI 10.1002/jin2.63
[2]   Genetic reprogramming for NK cell cancer immunotherapy with CRISPR/Cas9 [J].
Afolabi, Lukman O. ;
Adeshakin, Adeleye O. ;
Sani, Musbahu M. ;
Bi, Jiacheng ;
Wan, Xiaochun .
IMMUNOLOGY, 2019, 158 (02) :63-69
[3]   Manufacturing of primary CAR-NK cells in an automated system for the treatment of acute myeloid leukemia [J].
Albinger, Nawid ;
Mueller, Sabine ;
Kostyra, Julia ;
Kuska, Jan ;
Mertlitz, Sarah ;
Penack, Olaf ;
Zhang, Congcong ;
Moeker, Nina ;
Ullrich, Evelyn .
BONE MARROW TRANSPLANTATION, 2024, 59 (04) :489-495
[4]   Allogeneic natural killer cell therapy [J].
Berrien-Elliott, Melissa M. ;
Jacobs, Miriam T. ;
Fehniger, Todd A. .
BLOOD, 2023, 141 (08) :856-868
[5]   Engineering of potent CAR NK cells using non-viral Sleeping Beauty transposition from minimalistic DNA vectors [J].
Bexte, Tobias ;
Botezatu, Lacramioara ;
Miskey, Csaba ;
Gierschek, Fenja ;
Moter, Alina ;
Wendel, Philipp ;
Reindl, Lisa Marie ;
Campe, Julia ;
Villena-Ossa, Jose Francisco ;
Gebel, Veronika ;
Stein, Katja ;
Cathomen, Toni ;
Cremer, Anjali ;
Wels, Winfried S. ;
Hudecek, Michael ;
Ivics, Zoltan ;
Ullrich, Evelyn .
MOLECULAR THERAPY, 2024, 32 (07) :2357-2372
[6]   IL-27-engineered CAR.19-NK-92 cells exhibit enhanced therapeutic efficacy [J].
Biggi, Alison Felipe Bordini ;
Silvestre, Renata Nacasaki ;
Tirapelle, Mariane Cariati ;
de Azevedo, Julia Teixeira Cottas ;
Garcia, Henry David Mogollo ;
dos Santos, Matheus Henrique ;
de Lima, Sarah Caroline Gomes ;
de Souza, Lucas Eduardo Botelho ;
Covas, Dimas Tadeu ;
Malmegrim, Kelen Cristina Ribeiro ;
Figueiredo, Marxa L. ;
Picanco-Castro, Virginia .
CYTOTHERAPY, 2024, 26 (11) :1320-1330
[7]   Natural killer cells in antiviral immunity [J].
Bjorkstrom, Niklas K. ;
Strunz, Benedikt ;
Ljunggren, Hans-Gustaf .
NATURE REVIEWS IMMUNOLOGY, 2022, 22 (02) :112-123
[8]   Synthesis and mechanistic investigations of pH-responsive cationic poly(aminoester)s [J].
Blake, Timothy R. ;
Ho, Wilson C. ;
Turlington, Christopher R. ;
Zang, Xiaoyu ;
Huttner, Melanie A. ;
Wender, Paul A. ;
Waymouth, Robert M. .
CHEMICAL SCIENCE, 2020, 11 (11) :2951-2966
[9]   NK Cells Stimulate Recruitment of cDC1 into the Tumor Microenvironment Promoting Cancer Immune Control [J].
Boettcher, Jan P. ;
Bonavita, Eduardo ;
Chakravarty, Probir ;
Blees, Hanna ;
Cabeza-Cabrerizo, Mar ;
Sammicheli, Stefano ;
Rogers, Neil C. ;
Sahai, Erik ;
Zelenay, Santiago ;
Reis e Sousa, Caetano .
CELL, 2018, 172 (05) :1022-+
[10]   Engineering the TGFβ Receptor to Enhance the Therapeutic Potential of Natural Killer Cells as an Immunotherapy for Neuroblastoma [J].
Burga, Rachel A. ;
Yvon, Eric ;
Chorvinsky, Elizabeth ;
Fernandes, Rohan ;
Cruz, C. Russell Y. ;
Bollard, Catherine M. .
CLINICAL CANCER RESEARCH, 2019, 25 (14) :4400-4412