Effect of substrate misorientation angle on the structural properties of N-polar GaN grown by hot-wall MOCVD on 4H-SiC(000(1)over-bar)

被引:1
作者
Zhang, Hengfang [1 ]
Chen, Jr. -Tai [1 ,2 ]
Papamichail, Alexis [1 ,3 ]
Persson, Ingemar [4 ]
Tran, Dat Q. [1 ]
Paskov, Plamen P. [1 ]
Darakchieva, Vanya [1 ,3 ,5 ]
机构
[1] Linkoping Univ, Ctr Nitride Technol 3, Janzen & Dept Phys Chem & Biol, IFM, S-58183 Linkoping, Sweden
[2] SweGaN AB, Olaus Magnus vag 48A, S-58330 Linkoping, Sweden
[3] Linkoping Univ, Terahertz Mat Anal Ctr, THeMAC, S-58183 Linkoping, Sweden
[4] Linkoping Univ, Dept Phys Chem & Biol IFM, Thin Film Phys, S-58183 Linkoping, Sweden
[5] Lund Univ, Solid State Phys & NanoLund, POB 118, S-22100 Lund, Sweden
基金
瑞典研究理事会;
关键词
N-polar GaN; epitaxial growth; SiC substrate misorientation angle; Multi-step temperature growth; MOCVD; C-PLANE SAPPHIRE; SURFACE-MORPHOLOGY; SCHWOEBEL BARRIER; FACE; ALN;
D O I
10.1016/j.jcrysgro.2024.127971
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
The effects of substrate misorientation angle direction and degree on the structural properties of N-polar GaN grown by a novel multi-step temperature epitaxial approach using hot-wall metal-organic chemical vapor deposition (MOCVD) on 4H-SiC (000 (1) over bar) substrates is investigated. The surface morphology and X-ray diffraction (XRD) rocking curves (RCs) for both symmetric and asymmetric Bragg peaks of the multi-step temperature N-polar GaN are compared to a material obtained in a two-step temperature process. In the latter the temperature in the second step was varied so that it corresponds to the growth temperatures in each of the steps of the multi-step process. Different step-flow patterns are obtained on the substrates with a misorientation angle of 4 degrees depending on whether its direction is towards the a-plane or the m-plane. In contrast, fora misorientation angle of 1 degrees towards the m-plane, the surface morphology of N-polar GaN is dominated by hexagonal hillocks when using the 2-step temperature process and a step meandering growth mode is observed when employing the multi-step temperature process. These results are discussed and explained in terms of kinetic and thermodynamic considerations. As the growth temperature of the GaN layer in the 2-step temperature process increases from 950 degrees C to 1100 degrees C, the surface roughness and RCs widths decrease for the three types of substrates indicating improved crystal quality at higher temperature. The multi-step epitaxial approach is shown to be beneficial for achieving smooth surface morphology and low defect density of N-polar GaN layers grown on C-face SiC substrates with a misorientation angle of 4 degrees and an RMS value of 1.5 nm over an area of 20 mu m x 20 mu m is attained when the substrate mis-cut is towards the m-plane.
引用
收藏
页数:6
相关论文
共 44 条
[1]   Suppression of electron overflow and efficiency droop in N-polar GaN green light emitting diodes [J].
Akyol, F. ;
Nath, D. N. ;
Krishnamoorthy, S. ;
Park, P. S. ;
Rajan, S. .
APPLIED PHYSICS LETTERS, 2012, 100 (11)
[2]   The 2018 GaN power electronics roadmap [J].
Amano, H. ;
Baines, Y. ;
Beam, E. ;
Borga, Matteo ;
Bouchet, T. ;
Chalker, Paul R. ;
Charles, M. ;
Chen, Kevin J. ;
Chowdhury, Nadim ;
Chu, Rongming ;
De Santi, Carlo ;
De Souza, Maria Merlyne ;
Decoutere, Stefaan ;
Di Cioccio, L. ;
Eckardt, Bernd ;
Egawa, Takashi ;
Fay, P. ;
Freedsman, Joseph J. ;
Guido, L. ;
Haeberlen, Oliver ;
Haynes, Geoff ;
Heckel, Thomas ;
Hemakumara, Dilini ;
Houston, Peter ;
Hu, Jie ;
Hua, Mengyuan ;
Huang, Qingyun ;
Huang, Alex ;
Jiang, Sheng ;
Kawai, H. ;
Kinzer, Dan ;
Kuball, Martin ;
Kumar, Ashwani ;
Lee, Kean Boon ;
Li, Xu ;
Marcon, Denis ;
Maerz, Martin ;
McCarthy, R. ;
Meneghesso, Gaudenzio ;
Meneghini, Matteo ;
Morvan, E. ;
Nakajima, A. ;
Narayanan, E. M. S. ;
Oliver, Stephen ;
Palacios, Tomas ;
Piedra, Daniel ;
Plissonnier, M. ;
Reddy, R. ;
Sun, Min ;
Thayne, Iain .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2018, 51 (16)
[3]   Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures [J].
Ambacher, O ;
Smart, J ;
Shealy, JR ;
Weimann, NG ;
Chu, K ;
Murphy, M ;
Schaff, WJ ;
Eastman, LF ;
Dimitrov, R ;
Wittmer, L ;
Stutzmann, M ;
Rieger, W ;
Hilsenbeck, J .
JOURNAL OF APPLIED PHYSICS, 1999, 85 (06) :3222-3233
[4]   Growth and characterization of N-polar GaN films on SiC by metal organic chemical vapor deposition [J].
Brown, David F. ;
Keller, Stacia ;
Wu, Feng ;
Speck, James S. ;
DenBaars, Steven P. ;
Mishra, Umesh K. .
JOURNAL OF APPLIED PHYSICS, 2008, 104 (02)
[5]   Hot-Wall MOCVD for High-Quality Homoepitaxy of GaN: Understanding Nucleation and Design of Growth Strategies [J].
Carrascon, Rosalia Delgado ;
Richter, Steffen ;
Nawaz, Muhammad ;
Paskov, Plamen P. ;
Darakchieva, Vanya .
CRYSTAL GROWTH & DESIGN, 2022, 22 (12) :7021-7030
[6]   A GaN-SiC hybrid material for high-frequency and power electronics [J].
Chen, Jr-Tai ;
Bergsten, Johan ;
Lu, Jun ;
Janzen, Erik ;
Thorsell, Mattias ;
Hultman, Lars ;
Rorsman, Niklas ;
Kordina, Olof .
APPLIED PHYSICS LETTERS, 2018, 113 (04)
[7]   Room-temperature mobility above 2200cm2/V.s of two-dimensional electron gas in a sharp-interface AlGaN/GaN heterostructure [J].
Chen, Jr-Tai ;
Persson, Ingemar ;
Nilsson, Daniel ;
Hsu, Chih-Wei ;
Palisaitis, Justinas ;
Forsberg, Urban ;
Persson, Per O. A. ;
Janzen, Erik .
APPLIED PHYSICS LETTERS, 2015, 106 (25)
[8]   GaN power switches on the rise: Demonstrated benefits and unrealized potentials [J].
Chu, Rongming .
APPLIED PHYSICS LETTERS, 2020, 116 (09)
[9]   Significantly improved surface morphology of N-polar GaN film grown on SiC substrate by the optimization of V/III ratio [J].
Deng, Gaoqiang ;
Zhang, Yuantao ;
Yu, Ye ;
Yan, Long ;
Li, Pengchong ;
Han, Xu ;
Chen, Liang ;
Zhao, Degang ;
Du, Guotong .
APPLIED PHYSICS LETTERS, 2018, 112 (15)
[10]   Growth and polarity control of GaN and AIN on carbon-face SiC by metalorganic vapor phase epitaxy [J].
Fu, Yi ;
Fan, Q. ;
Chevtchenko, S. ;
Ozgur, U. ;
Morkoc, H. ;
Ke, You ;
Devaty, Robert ;
Choyke, W. J. ;
Inoki, C. K. ;
Kuan, T. S. .
GALLIUM NITRIDE MATERIALS AND DEVICES II, 2007, 6473