Interphase Design for Lithium-Metal Anodes

被引:0
|
作者
Wang, Qidi [1 ]
Zhao, Chenglong [1 ]
Wang, Shuwei [2 ]
Wang, Jianlin [3 ]
Wu, Fangting [2 ]
Ombrini, Pierfrancesco [1 ]
Ganapathy, Swapna [1 ]
Eustace, Stephen [4 ]
Bai, Xuedong [3 ]
Li, Baohua [2 ]
Armand, Michel [5 ]
Aurbach, Doron [6 ]
Wagemaker, Marnix [1 ]
机构
[1] Delft Univ Technol, Dept Radiat Sci & Technol, NL-2629JB Delft, Netherlands
[2] Tsinghua Shenzhen Int Grad Sch SIGS, Shenzhen Geim Graphene Ctr, Shenzhen Key Lab Power Battery Safety, Shenzhen 518055, Peoples R China
[3] Chinese Acad Sci, State Key Lab Surface Phys, Inst Phys, Beijing 100190, Peoples R China
[4] Delft Univ Technol, Dept Biotechnol, NL-2629HZ Delft, Netherlands
[5] Basque Res & Technol Alliance BRTA, Ctr Cooperat Res Alternat Energies CIC EnergiGUNE, Vitoria 01510, Spain
[6] Bar Ilan Univ, INIES Israel Natl Inst Energy Storage, BINA BIU Ctr Nanotechnol & Adv Mat, Dept Chem, IL-5290002 Ramat Gan, Israel
基金
中国国家自然科学基金;
关键词
PROTON CHEMICAL-EXCHANGE; BATTERIES; ELECTROLYTE; NMR; LI; CHALLENGES; DEPOSITION; AGENTS; WATER;
D O I
10.1021/jacs.4c15759
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electrode-electrolyte interphases are critical determinants of the reversibility and longevity of lithium (Li)-metal batteries (LMBs). However, upon cycling, the inherently delicate interphases, formed from electrolyte decomposition, become vulnerable to chemomechanical degradation and corrosion, resulting in rapid capacity loss and thus short battery life. Here, we present a comprehensive analysis of the complex interplay between the thermodynamic and kinetic properties of interphases on Li-metal anodes, providing insights into interphase design to address these challenges. Direct measurements of ion-transport kinetics across various electrolyte chemistries reveal that interphases with high Li-ion mobility are essential for achieving dense Li deposits. Conversely, sluggish ion transport generates high-surface-area Li deposits that induce Li random stripping and the accumulation of isolated Li deposits. Surprisingly, interphases that support long cycle life do not necessarily require the formation of dense Li deposits but must avoid possible electrochemical/chemical reactions between the Li-metal deposits and electrolytes' components. By that, in some specific electrolyte systems, isolated Li deposits can recover and electrically rejoin the active Li anodes' mass. These findings challenge conventional understanding and establish new principles for designing durable LMBs, demonstrating that even with commercial carbonate-based electrolytes, LiNi0.8Co0.1Mn0.1O2||Cu cells can achieve high reversibility.
引用
收藏
页码:9365 / 9377
页数:13
相关论文
共 50 条
  • [41] An Armored Mixed Conductor Interphase on a Dendrite-Free Lithium-Metal Anode
    Yan, Chong
    Cheng, Xin-Bing
    Yao, Yu-Xing
    Shen, Xin
    Li, Bo-Quan
    Li, Wen-Jun
    Zhang, Rui
    Huang, Jia-Qi
    Li, Hong
    Zhang, Qiang
    ADVANCED MATERIALS, 2018, 30 (45)
  • [42] Solvation Rule for Solid-Electrolyte Interphase Enabler in Lithium-Metal Batteries
    Su, Chi-Cheung
    He, Meinan
    Shi, Jiayan
    Amine, Rachid
    Zhang, Jian
    Amine, Khalil
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (41) : 18229 - 18233
  • [43] Artificial Interphase Design Employing Inorganic-Organic Components for High-Energy Lithium-Metal Batteries
    Kim, Yongil
    Stepien, Dominik
    Moon, Hyein
    Schoenherr, Kay
    Schumm, Benjamin
    Kuenzel, Matthias
    Althues, Holger
    Bresser, Dominic
    Passerini, Stefano
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (17) : 20987 - 20997
  • [44] Bioinspired Polysulfiphobic Artificial Interphase Layer on Lithium Metal Anodes for Lithium Sulfur Batteries
    Shen, Xiaowei
    Qian, Tao
    Chen, Pengpeng
    Liu, Jie
    Wang, Mengfan
    Yan, Chenglin
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (36) : 30058 - 30064
  • [45] Stabilization of Lithium Metal Anodes by Hybrid Artificial Solid Electrolyte Interphase
    Kozen, Alexander C.
    Lin, Chuan-Fu
    Zhao, Oliver
    Lee, Sang Bok
    Rubloff, Gary W.
    Noked, Malachi
    CHEMISTRY OF MATERIALS, 2017, 29 (15) : 6298 - 6307
  • [46] Recent Progress in Understanding Solid Electrolyte Interphase on Lithium Metal Anodes
    Wu, Haiping
    Jia, Hao
    Wang, Chongmin
    Zhang, Ji-Guang
    Xu, Wu
    ADVANCED ENERGY MATERIALS, 2021, 11 (05)
  • [47] An Artificial Solid Electrolyte Interphase Layer for Stable Lithium Metal Anodes
    Li, Nian-Wu
    Yin, Ya-Xia
    Yang, Chun-Peng
    Guo, Yu-Guo
    ADVANCED MATERIALS, 2016, 28 (09) : 1853 - 1858
  • [48] Viscoelastic polyborosiloxanes as artificial solid electrolyte interphase on lithium metal anodes
    Lennartz, Peter
    Borzutzki, Kristina
    Winter, Martin
    Brunklaus, Gunther
    ELECTROCHIMICA ACTA, 2021, 388
  • [49] Electrochemically-driven solid-state amorphization in lithium-metal anodes
    Limthongkul, P
    Jang, YI
    Dudney, NJ
    Chiang, YM
    JOURNAL OF POWER SOURCES, 2003, 119 : 604 - 609
  • [50] Elucidation of the Losses in Cycling Lithium-Metal Anodes in Carbonate-Based Electrolytes
    Mukra, Tzach
    Peled, Emanuel
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (10)