Interphase Design for Lithium-Metal Anodes

被引:0
|
作者
Wang, Qidi [1 ]
Zhao, Chenglong [1 ]
Wang, Shuwei [2 ]
Wang, Jianlin [3 ]
Wu, Fangting [2 ]
Ombrini, Pierfrancesco [1 ]
Ganapathy, Swapna [1 ]
Eustace, Stephen [4 ]
Bai, Xuedong [3 ]
Li, Baohua [2 ]
Armand, Michel [5 ]
Aurbach, Doron [6 ]
Wagemaker, Marnix [1 ]
机构
[1] Delft Univ Technol, Dept Radiat Sci & Technol, NL-2629JB Delft, Netherlands
[2] Tsinghua Shenzhen Int Grad Sch SIGS, Shenzhen Geim Graphene Ctr, Shenzhen Key Lab Power Battery Safety, Shenzhen 518055, Peoples R China
[3] Chinese Acad Sci, State Key Lab Surface Phys, Inst Phys, Beijing 100190, Peoples R China
[4] Delft Univ Technol, Dept Biotechnol, NL-2629HZ Delft, Netherlands
[5] Basque Res & Technol Alliance BRTA, Ctr Cooperat Res Alternat Energies CIC EnergiGUNE, Vitoria 01510, Spain
[6] Bar Ilan Univ, INIES Israel Natl Inst Energy Storage, BINA BIU Ctr Nanotechnol & Adv Mat, Dept Chem, IL-5290002 Ramat Gan, Israel
基金
中国国家自然科学基金;
关键词
PROTON CHEMICAL-EXCHANGE; BATTERIES; ELECTROLYTE; NMR; LI; CHALLENGES; DEPOSITION; AGENTS; WATER;
D O I
10.1021/jacs.4c15759
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electrode-electrolyte interphases are critical determinants of the reversibility and longevity of lithium (Li)-metal batteries (LMBs). However, upon cycling, the inherently delicate interphases, formed from electrolyte decomposition, become vulnerable to chemomechanical degradation and corrosion, resulting in rapid capacity loss and thus short battery life. Here, we present a comprehensive analysis of the complex interplay between the thermodynamic and kinetic properties of interphases on Li-metal anodes, providing insights into interphase design to address these challenges. Direct measurements of ion-transport kinetics across various electrolyte chemistries reveal that interphases with high Li-ion mobility are essential for achieving dense Li deposits. Conversely, sluggish ion transport generates high-surface-area Li deposits that induce Li random stripping and the accumulation of isolated Li deposits. Surprisingly, interphases that support long cycle life do not necessarily require the formation of dense Li deposits but must avoid possible electrochemical/chemical reactions between the Li-metal deposits and electrolytes' components. By that, in some specific electrolyte systems, isolated Li deposits can recover and electrically rejoin the active Li anodes' mass. These findings challenge conventional understanding and establish new principles for designing durable LMBs, demonstrating that even with commercial carbonate-based electrolytes, LiNi0.8Co0.1Mn0.1O2||Cu cells can achieve high reversibility.
引用
收藏
页码:9365 / 9377
页数:13
相关论文
共 50 条
  • [21] In Situ Solid Electrolyte Interphase from Spray Quenching on Molten Li: A New Way to Construct High-Performance Lithium-Metal Anodes
    Liu, Sufu
    Xia, Xinhui
    Deng, Shengjue
    Xie, Dong
    Yao, Zhujun
    Zhang, Liyuan
    Zhang, Shengzhao
    Wang, Xiuli
    Tu, Jiangping
    ADVANCED MATERIALS, 2019, 31 (03)
  • [22] Lithium Bis(oxalate)borate Reinforces the Interphase on Li-Metal Anodes
    Zhang, Qiankui
    Wang, Kang
    Wang, Xianshu
    Zhong, Yaotang
    Liu, Mingzhu
    Liu, Xiang
    Xu, Kang
    Fan, Weizhen
    Yu, Le
    Li, Weishan
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (23) : 20854 - 20863
  • [23] Effective Solid Electrolyte Interphase Formation on Lithium Metal Anodes by Mechanochemical Modification
    Wellmann, Julia
    Brinkmann, Jan-Paul
    Wankmiller, Bjoern
    Neuhaus, Kerstin
    Rodehorst, Uta
    Hansen, Michael R.
    Winter, Martin
    Paillard, Elie
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (29) : 34227 - 34237
  • [24] Recent research progress of alloy-containing lithium anodes in lithium-metal batteries
    Zhu, Mengqi
    Zhao, Xufeng
    Yan, Rongzhi
    Zhang, Jindan
    CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2023, 27 (03)
  • [25] Recent advances in research on anodes for safe and efficient lithium-metal batteries
    Zhang, Jifang
    Su, Yipeng
    Zhang, Yuegang
    NANOSCALE, 2020, 12 (29) : 15528 - 15559
  • [26] Lithium Metal Anode Materials Design: Interphase and Host
    Wang, Hansen
    Liu, Yayuan
    Li, Yuzhang
    Cui, Yi
    ELECTROCHEMICAL ENERGY REVIEWS, 2019, 2 (04) : 509 - 517
  • [27] Mechanistics of Lithium-Metal Battery Performance by Separator Architecture Design
    Wang, Wenxiu
    Hao, Feng
    Mukherjee, Partha P.
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (01) : 556 - 566
  • [28] Stabilization of Lithium-Metal Batteries Based on the in Situ Formation of a Stable Solid Electrolyte Interphase Layer
    Park, Seong-Jin
    Hwang, Jang-Yeon
    Yoon, Chong S.
    Jung, Hun-Gi
    Sun, Yang-Kook
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (21) : 17985 - 17993
  • [29] Interfacial Evolution of Lithium Dendrites and Their Solid Electrolyte Interphase Shells of Quasi-Solid-State Lithium-Metal Batteries
    Shi, Yang
    Wan, Jing
    Liu, Gui-Xian
    Zuo, Tong-Tong
    Song, Yue-Xian
    Liu, Bing
    Guo, Yu-Guo
    Wen, Rui
    Wan, Li-Jun
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (41) : 18120 - 18125
  • [30] Horizontal Centripetal Plating in the Patterned Voids of Li/Graphene Composites for Stable Lithium-Metal Anodes
    Wang, Aoxuan
    Zhang, Xinyue
    Yang, Ying-Wei
    Huang, Jiaxing
    Liu, Xingjiang
    Luo, Jiayan
    CHEM, 2018, 4 (09): : 2192 - 2200