A lightweight enhanced YOLOv8 algorithm for detecting small objects in UAV aerial photography

被引:0
作者
Pan, Wei [1 ]
Yang, Zhe [1 ]
机构
[1] Soochow Univ, Sch Comp Sci & Technol, Suzhou 215006, Peoples R China
基金
中国国家自然科学基金;
关键词
Unmanned aerial vehicle (UAV); Small object detection; YOLOv8; Lightweight;
D O I
10.1007/s00371-024-03796-3
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Facing with the problems of tiny and densely distributed image targets, uneven class distribution, and model size restriction of hardware conditions, object detection from the perspective of drones has less precise results. To tackle this issue, we introduce a refined YOLOv8m model integrating various lightweight strategies. Firstly, we propose an ESEMB (Mobile inverted Bottleneck convolution with Effective Squeeze and Extraction) module and a Faster module to improve c2f in the backbone. Specifically, ESEMB balances the three dimensions of network depth, width and image resolution for lightweight, and Faster module reduces the calculation of redundant channels to achieve efficient feature extraction. Secondly, we optimize the neck structure by adding feature layers with abundant semantic information of tiny targets, modifying the fusion mechanism with adding additional fusion of underlying information to increase spatial semantic information of feature graph, which are conducive to small object detection. Thirdly, the improved detection head Phead notably reduces the number of model parameters by redesigning the detection head using lightweight module. Additionally, we use inner-IoU loss function to improve MPDIoU (Minimum Point Distance based IoU) function, replacing the original loss function with inner-MPDIoU, improving the learning ability of difficult samples. Finally, we use a variety of pruning algorithms to further lightweight the model and fine-tune it. The experimental results show that the model size and parameter number of the improved model are only 14.2% and 49.6% of the original YOLOv8m model, but the model detection performance has been considerably improved. P, mAP@0.5 and mAP@0.5:0.95 have respectively increased by 15.9%, 21.7% and 34.1%. It achieves lightweight and optimization accuracy at the same time, and can be effectively applied to target detection tasks on UAV platforms. The code and datasets are available at https://github.com/pwvivi/le-yolo.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Enhanced YOLOv8 for small-object detection in multiscale UAV imagery: Innovations in detection accuracy and efficiency
    Luo, Weixin
    Yuan, Sannan
    DIGITAL SIGNAL PROCESSING, 2025, 158
  • [22] An improved YOLOv8 algorithm for small object detection in autonomous driving
    Cao, Jie
    Zhang, Tong
    Hou, Liang
    Nan, Ning
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2024, 21 (04)
  • [23] LWFDD-YOLO: a lightweight defect detection algorithm based on improved YOLOv8
    Chen, Chang
    Zhou, Qihong
    Xiao, Lei
    Li, Shujia
    Luo, Dong
    TEXTILE RESEARCH JOURNAL, 2024,
  • [24] YOLOv8s-NE: Enhancing Object Detection of Small Objects in Nursery Environments Based on Improved YOLOv8
    Bin Amir, Supri
    Horio, Keiichi
    ELECTRONICS, 2024, 13 (16)
  • [25] Remote sensing small object detection algorithm based on improved YOLOv8
    Peng, Yanfei
    Qian, Jiani
    Tu, Shiting
    Li, Pai
    2024 5TH INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING AND APPLICATION, ICCEA 2024, 2024, : 1273 - 1278
  • [26] FBS-YOLO: an improved lightweight bearing defect detection algorithm based on YOLOv8
    Li, Junjie
    Cheng, Mingxia
    PHYSICA SCRIPTA, 2025, 100 (02)
  • [27] LAYN: Lightweight Multi-Scale Attention YOLOv8 Network for Small Object Detection
    Ma, Songzhe
    Lu, Huimin
    Liu, Jie
    Zhu, Yungang
    Sang, Pengcheng
    IEEE ACCESS, 2024, 12 : 29294 - 29307
  • [28] A Lightweight and Dynamic Feature Aggregation Method for Cotton Field Weed Detection Based on Enhanced YOLOv8
    Ren, Doudou
    Yang, Wenzhong
    Lu, Zhifeng
    Chen, Danny
    Su, Wenxuan
    Li, Yihang
    ELECTRONICS, 2024, 13 (11)
  • [29] UAV aerial photography target detection based on improved YOLOv9
    Zhang, Heng
    Peng, Yang
    Liu, Yan li
    JOURNAL OF SUPERCOMPUTING, 2025, 81 (03)
  • [30] ODD-YOLOv8: an algorithm for small object detection in UAV imagery
    Zhang, Yunjie
    Gao, Guofeng
    Chen, Yadong
    Yang, Zhenjian
    JOURNAL OF SUPERCOMPUTING, 2025, 81 (01)