Electrocatalytic Ammonia Oxidation by Pyridyl-Substituted Ferrocenes

被引:2
作者
Ahmed, Md Estak [1 ]
Staples, Richard J. [1 ]
Cundari, Thomas R. [2 ]
Warren, Timothy H. [1 ]
机构
[1] Michigan State Univ, Dept Chem, E Lansing, MI 48824 USA
[2] Univ North Texas, Dept Chem, Denton, TX 76203 USA
基金
美国国家科学基金会;
关键词
ELECTRON-TRANSFER; CATALYSTS; CLUSTERS;
D O I
10.1021/jacs.4c14483
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Ammonia (NH3) is a promising carbon-free fuel when prepared from sustainable resources. First-row transition metal electrocatalysts for ammonia oxidation are an enabling technology for sustainable energy production. We describe electrocatalytic ammonia oxidation using robust molecular complexes based on Earth-abundant iron. Electrochemical studies of ferrocenes with covalently attached pyridine arms reveal facile ammonia oxidation in DMSO (2.4 M NH3) with modest overpotentials (eta = 770-820 mV) and turnover frequencies (125-560 h-1). Experimental and computational studies indicate that the pendant pyridyl base serves as an H-bond acceptor with an N-H bond of ammonia that transfers a proton to the pyridine following oxidation by the attached ferrocenium moiety in a proton-coupled electron transfer (PCET) step. This generates an amidyl (center dot NH2) radical stabilized via H-bonding to a pendant pyridinium moiety that rapidly dimerizes to hydrazine (H2N-NH2), which is easily oxidized to nitrogen (N2) at the glassy carbon working electrode. This report identifies a general strategy to oxidize ammonia via H-bonding to a base (B:), thereby activating [B<middle dot><middle dot><middle dot>H-NH2] toward PCET by a proximal oxidant to form [BH<middle dot><middle dot><middle dot>NH2]+/center dot radical cations, which are susceptible to dimerization to form easily oxidized hydrazine.
引用
收藏
页码:6514 / 6522
页数:9
相关论文
共 56 条
[1]   Review-Ammonia Oxidation Electrocatalysis for Hydrogen Generation and Fuel Cells [J].
Adli, Nadia Mohd ;
Zhang, Hao ;
Mukherjee, Shreya ;
Wu, Gang .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (15) :J3130-J3147
[2]   Ammonia-fed fuel cells: a comprehensive review [J].
Afif, Ahmed ;
Radenahmad, Nikdalila ;
Cheok, Quentin ;
Shams, Shahriar ;
Kim, Jung H. ;
Azad, Abul K. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2016, 60 :822-835
[3]   Electrocatalytic Ammonia Oxidation by a Low-Coordinate Copper Complex [J].
Ahmed, Md Estak ;
Boroujeni, Mahdi Raghibi ;
Ghosh, Pokhraj ;
Greene, Christine ;
Kundu, Subrata ;
Bertke, Jeffery A. ;
Warren, Timothy H. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2022, 144 (46) :21136-21145
[4]   Oxygen-Tolerant H2 Production by [FeFe]-H2ase Active Site Mimics Aided by Second Sphere Proton Shuttle [J].
Ahmed, Md Estak ;
Dey, Subal ;
Darensbourg, Marcetta Y. ;
Dey, Abhishek .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (39) :12457-12468
[5]   Industrial waste-based Ni-catalysts for ammonia decomposition to produce clean hydrogen [J].
Alamoudi, Omar M. ;
Khan, Wasim Ullah ;
Hantoko, Dwi ;
Ali, Syed A. ;
Hossain, Mohammad M. .
FUEL, 2024, 367
[6]  
[Anonymous], 2001, Electrochemical Methods: Fundamentals and Applications, V2 Bard, A. J. F
[7]   The electrochemistry of some ferrocene derivatives: redox potential and substituent effects [J].
Batterjee, SM ;
Marzouk, MI ;
Aazab, ME ;
El-Hashash, MA .
APPLIED ORGANOMETALLIC CHEMISTRY, 2003, 17 (05) :291-297
[8]   Molecular Catalysts for Water Oxidation [J].
Blakemore, James D. ;
Crabtree, Robert H. ;
Brudvig, Gary W. .
CHEMICAL REVIEWS, 2015, 115 (23) :12974-13005
[9]   Direct ammonia fuel cells for power generation: Recent technological advances and mobility applications [J].
Bora, Debajeet K. ;
Faik, Abdessamad .
CURRENT OPINION IN GREEN AND SUSTAINABLE CHEMISTRY, 2024, 48
[10]   Green ammonia production: Process technologies and challenges [J].
Bora, Neelam ;
Singh, Akhilesh Kumar ;
Pal, Priti ;
Sahoo, Uttam Kumar ;
Seth, Dibyakanta ;
Rathore, Dheeraj ;
Bhadra, Sudipa ;
Sevda, Surajbhan ;
Venkatramanan, Veluswamy ;
Prasad, Shiv ;
Singh, Anoop ;
Kataki, Rupam ;
Sarangi, Prakash Kumar .
FUEL, 2024, 369