Multi-perspective SAR to 3D Translation using Generative AI

被引:0
作者
Newey, Michael [1 ]
Kuczynski, James [1 ]
Laher, Rebecca [1 ]
Chan, Michael [1 ]
Vasile, Alexandru [1 ]
机构
[1] MIT, Lincoln Lab, Lexington, MA 02421 USA
来源
2024 IEEE RADAR CONFERENCE, RADARCONF 2024 | 2024年
关键词
Synthetic Aperture Radar; Artificial Neural Networks; LiDAR;
D O I
10.1109/RADARCONF2458775.2024.10549436
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
This work explores the use of generative adversarial networks (GAN) for multi-look SAR to 3D conversion. We extend 2D-to-2D image translation techniques such as CycleGAN to convert SAR imagery to 3D, taking advantage of existing LiDAR data to provide the 3D information for model training. We use collected X-band radar data from the MITLL ARTB sensor, LiDAR from the MITLL AOSTB sensor and USGS public data in our experiments. We evaluate GAN-based translation performance on large sub-urban scenes as well as on small chips centered on ground vehicles. We evaluate the performance of the algorithms with different number and extents of synthetic aperture radar look angles. Finally, for the case of under- or non-represented cases in training data, we introduce a novel inverted simulation augmentation training-and-test procedure for target classification.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Retrieving 3D relief by using a single-antenna, squint-mode airborne SAR
    Bezvesilniy, O. O.
    Dukhopelnykova, Y. V.
    Vynogradov, V. V.
    Vavriv, D. M.
    2006 EUROPEAN RADAR CONFERENCE, 2006, : 288 - +
  • [22] Monitoring and analysis of mining 3D time-series deformation based on multi-track SAR data
    Zheng, Meinan
    Deng, Kazhong
    Fan, Hongdong
    Du, Sen
    Zou, Hao
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2019, 40 (04) : 1409 - 1425
  • [23] 3D Feature Estimation for Sparse, Nonlinear Bistatic SAR Apertures
    Jackson, Julie Ann
    Moses, Randolph L.
    2010 IEEE RADAR CONFERENCE, 2010, : 298 - 303
  • [24] COMPARATIVE ANALYSIS OF DETAILED FEATURES IN 3D MODELS FOR SAR SIMULATION
    Ho, Chia Yee
    Mas, Erick
    Adriano, Bruno
    Koshimura, Shunichi
    IGARSS 2024-2024 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, IGARSS 2024, 2024, : 1750 - 1754
  • [25] Laboratory multistatic 3D SAR with polarimetry and sparse aperture sampling
    Welsh, Richard
    Andre, Daniel
    Finnis, Mark
    IET RADAR SONAR AND NAVIGATION, 2024, 18 (01) : 184 - 197
  • [26] W-Band GB-SAR for 3D Imaging
    Beni, A.
    Consumi, T.
    Miccinesi, L.
    Pieraccini, M.
    2022 19TH EUROPEAN RADAR CONFERENCE (EURAD), 2022, : 61 - 64
  • [27] An algorithm for wide aperture 3D SAR imaging with measured data
    Lee-Elkin, Forest
    Potter, Lee
    ALGORITHMS FOR SYNTHETIC APERTURE RADAR IMAGERY XVIII, 2011, 8051
  • [28] MARKOVIAN GRAPH LABELING FOR 3D RECONSTRUCTION IN DENSE URBAN AREA USING SAR AND OPTICAL IMAGES.
    Riot, Paul
    Tupin, Florence
    Nicolas, Jean-Marie
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 2951 - 2954
  • [29] Validate and Update of 3D Urban Features using Multi-Source Fusion
    Arrington, Marcus
    Edwards, Dan
    Sengers, Arjan
    GEOSPATIAL INFOFUSION II, 2012, 8396
  • [30] 3D Object Pose Estimation Using Multi-Objective Quaternion Learning
    Papaioannidis, Christos
    Pitas, Ioannis
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2020, 30 (08) : 2683 - 2693