A spectral representation for the entropy of random dynamical systems

被引:0
作者
Rahimi, M. [1 ]
Bidabadi, N. [1 ]
机构
[1] Univ Qom, Fac Sci, Dept Math, Qom, Iran
来源
DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL | 2025年
关键词
Entropy; skew entropy exponent; noise entropy exponent; random dynamical system; INVARIANT;
D O I
10.1080/14689367.2025.2475860
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the entropy of a random dynamical system from an operator theoretical view point. We define skew and noise entropy exponents, using linear operators on some Hilbert spaces. Then we express the entropy of a random dynamical system in terms of the skew and noise entropy exponents.
引用
收藏
页数:16
相关论文
共 37 条
[1]  
Adler R. L., 1963, Proc. Amer. Math. Soc, V14, P665
[2]   TOPOLOGICAL ENTROPY [J].
ADLER, RL ;
KONHEIM, AG ;
MCANDREW, MH .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 114 (02) :309-&
[3]  
Arnold L, 2003, Springer Monographs in Mathematics
[4]  
Atnip J., 2024, Hal-04389272
[5]  
Biskamp M, 2014, J DYN DIFFER EQU, V26, P109, DOI 10.1007/s10884-014-9347-4
[6]  
Bogenschutz T, 1993, Equilibrium states for random dynamical systems
[7]  
Bogenschutz T., 1992, RANDOM COMPUTATIONAL, V1, P99
[8]   INVARIANT MEASURES FOR MARKOV MAPS OF THE INTERVAL [J].
BOWEN, R .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 69 (01) :1-17
[9]  
Canovas J.S., 2000, THESIS U MURCIA
[10]   On the Topological Entropy of Some Skew-Product Maps [J].
Canovas, Jose S. .
ENTROPY, 2013, 15 (08) :3100-3108