Heat shock responsive genes in Brassicaceae: genome-wide identification, phylogeny, and evolutionary associations within and between genera

被引:4
作者
Cantila, Aldrin Y. [1 ]
Chen, Sheng [1 ]
Siddique, Kadambot H. M. [1 ]
Cowling, Wallace A. [1 ]
机构
[1] Univ Western Australia, UWA Inst Agr, Perth, WA 6000, Australia
关键词
Brassicaceae family; heat shock proteins; heat shock transcription factors; heat stress tolerance; canola; FACTOR-BINDING PROTEIN; STRESS TOLERANCE; OVER-EXPRESSION; PAN-GENOME; ARABIDOPSIS; DOMESTICATION; LOCALIZATION; CONSEQUENCES; POLYPLOIDY; MECHANISMS;
D O I
10.1139/gen-2024-0061
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Heat stress affects the growth and development of Brassicaceae crops. Plant breeders aim to mitigate the effects of heat stress by selecting for heat stress tolerance, but the genes responsible for heat stress in Brassicaceae remain largely unknown. During heat stress, heat shock proteins (HSPs) function as molecular chaperones to aid in protein folding, and heat shock transcription factors (HSFs) serve as transcriptional regulators of HSP expression. We identified 5002 heat shock related genes, including HSPs and HSFs, across 32 genomes in Brassicaceae. Among these, 3347 genes were duplicated, with segmented duplication primarily contributing to their expansion. We identified 466 physical gene clusters, including 240 homogenous clusters and 226 heterogeneous clusters, shedding light on the organization of heat shock related genes. Notably, 37 genes were co-located with published thermotolerance quantitative trait loci, which supports their functional role in conferring heat stress tolerance. This study provides a comprehensive resource for the identification of functional Brassicaceae heat shock related genes, elucidates their clustering and duplication patterns and establishes the genomic foundation for future heat tolerance research. We hypothesise that genetic variants in HSP and HSF genes in certain species have potential for improving heat stress tolerance in Brassicaceae crops.
引用
收藏
页码:464 / 481
页数:18
相关论文
共 150 条
[1]   Genome-wide dissection of AP2/ERF and HSP90 gene families in five legumes and expression profiles in chickpea and pigeonpea [J].
Agarwal, Gaurav ;
Garg, Vanika ;
Kudapa, Himabindu ;
Doddamani, Dadakhalandar ;
Pazhamala, Lekha T. ;
Khan, Aamir W. ;
Thudi, Mahendar ;
Lee, Suk-Ha ;
Varshney, Rajeev K. .
PLANT BIOTECHNOLOGY JOURNAL, 2016, 14 (07) :1563-1577
[2]   Improving Heat Stress Tolerance in Camelina sativa and Brassica napus Through Thiourea Seed Priming [J].
Ahmad, Muhammad ;
Waraich, Ejaz Ahmad ;
Hussain, Saddam ;
Ayyub, Choudhary Muhammad ;
Ahmad, Zahoor ;
Zulfiqar, Usman .
JOURNAL OF PLANT GROWTH REGULATION, 2022, 41 (07) :2886-2902
[3]  
Alamery S, 2018, CROP PASTURE SCI, V69, P79, DOI [10.1071/CP17214, 10.1071/cp17214]
[4]   Protein database searches using compositionally adjusted substitution matrices [J].
Altschul, SF ;
Wootton, JC ;
Gertz, EM ;
Agarwala, R ;
Morgulis, A ;
Schäffer, AA ;
Yu, YK .
FEBS JOURNAL, 2005, 272 (20) :5101-5109
[5]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[6]   Response of three Brassica species to high temperature stress during reproductive growth [J].
Angadi, SV ;
Cutforth, HW ;
Miller, PR ;
McConkey, BG ;
Entz, MH ;
Brandt, SA ;
Volkmar, KM .
CANADIAN JOURNAL OF PLANT SCIENCE, 2000, 80 (04) :693-701
[7]   Editorial: The Brassicaceae-Agri-Horticultural and Environmental Perspectives [J].
Anjum, Naser A. ;
Gill, Sarvajeet S. ;
Dhankher, Om P. ;
Jimenez, Juan F. ;
Tuteja, Narendra .
FRONTIERS IN PLANT SCIENCE, 2018, 9
[8]   Modelling of gene loss propensity in the pangenomes of three Brassica species suggests different mechanisms between polyploids and diploids [J].
Bayer, Philipp E. ;
Scheben, Armin ;
Golicz, Agnieszka A. ;
Yuan, Yuxuan ;
Faure, Sebastien ;
Lee, HueyTyng ;
Chawla, Harmeet Singh ;
Anderson, Robyn ;
Bancroft, Ian ;
Raman, Harsh ;
Lim, Yong Pyo ;
Robbens, Steven ;
Jiang, Lixi ;
Liu, Shengyi ;
Barker, Michael S. ;
Schranz, M. Eric ;
Wang, Xiaowu ;
King, Graham J. ;
Pires, J. Chris ;
Chalhoub, Boulos ;
Snowdon, Rod J. ;
Batley, Jacqueline ;
Edwards, David .
PLANT BIOTECHNOLOGY JOURNAL, 2021, 19 (12) :2488-2500
[9]   Dated molecular phylogenies indicate a Miocene origin for Arabidopsis thaliana [J].
Beilstein, Mark A. ;
Nagalingum, Nathalie S. ;
Clements, Mark D. ;
Manchester, Steven R. ;
Mathews, Sarah .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (43) :18724-18728
[10]   Chromosome-scale assemblies of plant genomes using nanopore long reads and optical maps [J].
Belser, Caroline ;
Istace, Benjamin ;
Denis, Erwan ;
Dubarry, Marion ;
Baurens, Franc-Christophe ;
Falentin, Cyril ;
Genete, Mathieu ;
Berrabah, Wahiba ;
Chevre, Anne-Marie ;
Delourme, Regine ;
Deniot, Gwenaelle ;
Denoeud, France ;
Duffe, Philippe ;
Engelen, Stefan ;
Lemainque, Arnaud ;
Manzanares-Dauleux, Maria ;
Martin, Guillaume ;
Morice, Jerome ;
Noel, Benjamin ;
Vekemans, Xavier ;
D'Hont, Angelique ;
Rousseau-Gueutin, Mathieu ;
Barbe, Valerie ;
Cruaud, Corinne ;
Wincker, Patrick ;
Aury, Jean-Marc .
NATURE PLANTS, 2018, 4 (11) :879-+