The magnetic field of the Radcliffe wave: Starlight polarization at the nearest approach to the Sun

被引:0
|
作者
Panopoulou, G. V. [1 ]
Zucker, C. [2 ]
Clemens, D. [3 ]
Pelgrims, V. [4 ]
Soler, J. D. [5 ]
Clark, S. E. [6 ,7 ]
Alves, J. [8 ]
Goodman, A. [2 ]
Tjus, J. Becker [1 ,9 ,10 ]
机构
[1] Chalmers Univ Technol, Dept Space Earth & Environm, Gothenburg, Sweden
[2] Ctr Astrophys Harvard & Smithsonian, 60 Garden St, Cambridge, MA 02138 USA
[3] Boston Univ, Inst Astrophys Res, 725 Commonwealth Ave, Boston, MA 02215 USA
[4] Univ Libre Bruxelles, Sci Fac, CP230, B-1050 Brussels, Belgium
[5] Ist Astrofis & Planetol Spaziali IAPS, INAF, Via Fosso Cavaliere 100, I-00133 Rome, Italy
[6] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
[7] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, POB 2450, Stanford, CA 94305 USA
[8] Univ Vienna, Dept Astrophys, Turkenschanzstr 17, A-1180 Vienna, Austria
[9] Ruhr Univ Bochum, Fak Phys & Astron, Theoret Phys 4, D-44780 Bochum, Germany
[10] Ruhr Univ Bochum, Ruhr Astroparticle & Plasma Phys Ctr, RAPP Ctr, D-44780 Bochum, Germany
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
techniques: polarimetric; dust; extinction; ISM: magnetic fields; ISM: structure; local insterstellar matter; MOLECULAR CLOUD; STELLAR POLARIZATION; PARKER INSTABILITY; INTERSTELLAR; STARS; GAS; COMPONENT; FILAMENTS; GAIA; EMISSION;
D O I
10.1051/0004-6361/202450991
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Aims. We investigate the geometry of the magnetic field toward the Radcliffe wave, a coherent part of the nearby Local Arm of 3 kpc in length recently discovered via three-dimensional dust mapping. Methods. We used archival stellar polarization in the optical and new measurements in the near-infrared to trace the magnetic field as projected on the plane of the sky. Our new observations cover the portion of the structure that is closest to the Sun, between Galactic longitudes of 122 degrees and 188 degrees. Results. The polarization angles of stars immediately behind the Radcliffe wave appear to be aligned with the structure as projected on the plane of the sky. The observed magnetic field configuration is inclined with respect to the Galactic disk at an angle of 18 degrees. This departure from a geometry parallel to the plane of the Galaxy is contrary to previous constraints from more distant stars and polarized dust emission. We confirm that the polarization angle of stars at larger distances shows a mean orientation parallel to the Galactic disk. Conclusions. We discuss the implications of the observed morphology of the magnetic field for models of the large-scale Galactic magnetic field, as well as formation scenarios for the Radcliffe wave itself.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] THE SUN'S MERIDIONAL CIRCULATION AND INTERIOR MAGNETIC FIELD
    Wood, T. S.
    McCaslin, J. O.
    Garaud, P.
    ASTROPHYSICAL JOURNAL, 2011, 738 (01)
  • [22] Planck intermediate results XXXIII. Signature of the magnetic field geometry of interstellar filaments in dust polarization maps
    Ade, P. A. R.
    Aghanim, N.
    Alves, M. I. R.
    Arnaud, M.
    Arzoumanian, D.
    Aumont, J.
    Baccigalupi, C.
    Banday, A. J.
    Barreiro, R. B.
    Bartolo, N.
    Battaner, E.
    Benabed, K.
    Benoit-Levy, A.
    Bernard, J-P.
    Berne, O.
    Bersanelli, M.
    Bielewicz, P.
    Bonaldi, A.
    Bonavera, L.
    Bond, J. R.
    Borrill, J.
    Bouchet, F. R.
    Boulanger, F.
    Bracco, A.
    Burigana, C.
    Calabrese, E.
    Cardoso, J-F.
    Catalano, A.
    Chamballu, A.
    Chiang, H. C.
    Christensen, P. R.
    Clements, D. L.
    Colombi, S.
    Colombo, L. P. L.
    Combet, C.
    Couchot, F.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    Danese, L.
    Davies, R. D.
    Davis, R. J.
    de Bernardis, P.
    de Rosa, A.
    de Zotti, G.
    Delabrouille, J.
    Dickinson, C.
    Diego, J. M.
    Donzelli, S.
    Dore, O.
    ASTRONOMY & ASTROPHYSICS, 2016, 586
  • [23] THE MAGNETIC FIELD IN TAURUS PROBED BY INFRARED POLARIZATION
    Chapman, Nicholas L.
    Goldsmith, Paul F.
    Pineda, Jorge L.
    Clemens, D. P.
    Li, Di
    Krco, Marko
    ASTROPHYSICAL JOURNAL, 2011, 741 (01)
  • [24] Synchrotron polarization with a partially random magnetic field: General approach and application to X-ray polarization from supernova remnants
    Bandiera, Rino
    Petruk, Oleh
    ASTRONOMY & ASTROPHYSICS, 2024, 689
  • [25] THE INTERSTELLAR MAGNETIC FIELD CLOSE TO THE SUN. II.
    Frisch, P. C.
    Andersson, B-G
    Berdyugin, A.
    Piirola, V.
    DeMajistre, R.
    Funsten, H. O.
    Magalhaes, A. M.
    Seriacopi, D. B.
    McComas, D. J.
    Schwadron, N. A.
    Slavin, J. D.
    Wiktorowicz, S. J.
    ASTROPHYSICAL JOURNAL, 2012, 760 (02)
  • [26] Shock wave acceleration in a magnetic field
    Golubyatnikov, A. N.
    Kovalevskaya, S. D.
    FLUID DYNAMICS, 2014, 49 (06) : 844 - 848
  • [27] Probing the Solar Magnetic Field with a Sun-Grazing Comet
    Downs, Cooper
    Linker, Jon A.
    Mikic, Zoran
    Riley, Pete
    Schrijver, Carolus J.
    Saint-Hilaire, Pascal
    SCIENCE, 2013, 340 (6137) : 1196 - 1199
  • [28] Impact of the ISM magnetic field on GRB afterglow polarization
    Teboul, O.
    Shaviv, N. J.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 507 (04) : 5340 - 5347
  • [29] Statistical assessment of shapes and magnetic field orientations in molecular clouds through polarization observations
    Tassis, K.
    Dowell, C. D.
    Hildebrand, R. H.
    Kirby, L.
    Vaillancourt, J. E.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2009, 399 (04) : 1681 - 1693
  • [30] Mapping the Sun's coronal magnetic field using the Zeeman effect
    Schad, Thomas A.
    Petrie, Gordon J. D.
    Kuhn, Jeffrey R.
    Fehlmann, Andre
    Rimmele, Thomas
    Tritschler, Alexandra
    Woeger, Friedrich
    Scholl, Isabelle
    Williams, Rebecca
    Harrington, David
    Paraschiv, Alin R.
    Szente, Judit
    SCIENCE ADVANCES, 2024, 10 (37):