AFFINE FRACTIONAL SOBOLEV AND ISOPERIMETRIC INEQUALITIES

被引:0
|
作者
Haddad, Julian [1 ]
Ludwig, Monika [2 ]
机构
[1] Univ Seville, Fac Matemat, Dept Anal Matemat, Seville, Spain
[2] Tech Univ Wien, Inst Diskrete Math & Geometrie, Wiedner Hauptstr 8-10-1046, A-1040 Vienna, Austria
基金
奥地利科学基金会;
关键词
POLYA-SZEGO PRINCIPLE; PROJECTION; EQUALITY;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Sharp affine fractional Sobolev inequalities for functions on R-n are established. For each 0 < s < 1, the new inequalities are significantly stronger than (and directly imply) the sharp fractional Sobolev inequalities of Almgren and Lieb. In the limit as s -> 1-, the new inequalities imply the sharp affine Sobolev inequality of Gaoyong Zhang. As a consequence, fractional Petty projection inequalities are obtained which are stronger than the fractional Euclidean isoperimetric inequalities, and a natural conjecture for radial mean bodies is proved.
引用
收藏
页码:695 / 724
页数:30
相关论文
共 50 条
  • [1] Affine fractional Lp Sobolev inequalities
    Haddad, Julian
    Ludwig, Monika
    MATHEMATISCHE ANNALEN, 2024, 388 (01) : 1091 - 1115
  • [2] Complex affine isoperimetric inequalities
    Haberl, Christoph
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2019, 58 (05)
  • [3] Complex affine isoperimetric inequalities
    Christoph Haberl
    Calculus of Variations and Partial Differential Equations, 2019, 58
  • [4] On the Lp affine isoperimetric inequalities
    WUYANG YU
    GANGSONG LENG
    Proceedings - Mathematical Sciences, 2011, 121 : 447 - 455
  • [5] Lp affine isoperimetric inequalities
    Lutwak, E
    Yang, D
    Zhang, GY
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2000, 56 (01) : 111 - 132
  • [6] On the Lp affine isoperimetric inequalities
    Yu, Wuyang
    Leng, Gangsong
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2011, 121 (04): : 447 - 455
  • [7] Isoperimetric Inequalities for Extremal Sobolev Functions
    Ratzkin, Jesse
    Carroll, Tom
    Extended Abstracts Fall 2013: Geometrical Analysis; Type Theory, Homotopy Theory and Univalent Foundations, 2015, : 67 - 71
  • [8] Two isoperimetric inequalities for the Sobolev constant
    Carroll, Tom
    Ratzkin, Jesse
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2012, 63 (05): : 855 - 863
  • [9] Sobolev and isoperimetric inequalities with monomial weights
    Cabre, Xavier
    Ros-Oton, Xavier
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (11) : 4312 - 4336
  • [10] SOBOLEV AND ISOPERIMETRIC INEQUALITIES FOR RIEMANNIAN SUBMANIFOLDS
    HOFFMAN, D
    SPRUCK, J
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1974, 27 (06) : 715 - 727