Fixed Points Of Cyclic (σ , λ)-Admissible Generalized Contraction Type Maps In b-Metric Spaces With Applications

被引:0
作者
Babu, Dasari Ratna [1 ]
Chander, Kodeboina Bhanu [1 ]
Kumar, Tumurukota Venkata Pradeep [2 ]
Prasad, Nasina Siva [3 ]
Kunda, Narayana [4 ]
机构
[1] PSCMR CET, Dept Math, Vijayawada 520001, India
[2] Acharya Nagarjuna Univ, Dept Math, Nagarjuna Nagar 522501, India
[3] PBR VITS, Dept Math, Kavali 524201, India
[4] Narayana Engn Coll, Dept Math, Gudur 524101, India
来源
APPLIED MATHEMATICS E-NOTES | 2024年 / 24卷
关键词
MAPPINGS; THEOREMS; BETA)-(PSI; (ALPHA;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper explores the existence and uniqueness of fixed points for cyclic (sigma , lambda)-admissible generalized contraction type maps in complete b-metric spaces. Further, we apply it to a pair of maps and establish the presence of common fixed points. Our results extend/generalize the results of Kumar et al. [21] from the metric space setting to b-metric spaces. We incorporate a few corollaries from our results and present instances to bolster the findings. Several applications are illustrated.
引用
收藏
页码:379 / 398
页数:20
相关论文
共 29 条
  • [1] Meir-Keeler α-contractive fixed and common fixed point theorems
    Abdeljawad, Thabet
    [J]. FIXED POINT THEORY AND APPLICATIONS, 2013,
  • [2] Some Fixed Point Results for (α, β)-(ψ, φ)-Contractive Mappings
    Alizadeh, Sattar
    Moradlou, Fridoun
    Salimi, Peyman
    [J]. FILOMAT, 2014, 28 (03) : 635 - 647
  • [3] Babu D. R., 2020, Advances in the Theory of Nonlinear Anal. Appl., V4, P14
  • [4] Coupled fixed points of generalized rational type Z-contraction maps in b-metric spaces
    Babu, Velisela Amarendra
    Babu, Dasari Ratna
    Prasad, Nasina Siva
    [J]. INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 (02): : 789 - 802
  • [5] Bellman R., 1978, AEQUATIONES MATH, V17, P1, DOI [DOI 10.1007/BF01818535, 10.1007/BF01818535]
  • [6] Bogin J., 1976, Canad. Math. Bull, V19, P7
  • [7] Multivalued fractals in b-metric spaces
    Boriceanu, Monica
    Bota, Marius
    Petrusel, Adrian
    [J]. CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2010, 8 (02): : 367 - 377
  • [8] CIRIC L, 1993, INDIAN J PURE AP MAT, V24, P145
  • [9] A new class of nonexpansive type mappings and fixed points
    Ciric, LB
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 1999, 49 (04) : 891 - 899
  • [10] Ciric Lj.B., 1972, Mat. Vesnik, V9, P265