Continued fractions and Hardy sums

被引:0
|
作者
Lageler, Alessandro
机构
来源
ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG | 2024年 / 94卷 / 02期
关键词
Dedekind sums; Continued fractions; Hardy sums; Number theory; DEDEKIND;
D O I
10.1007/s12188-024-00283-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The classical Dedekind sums s(d, c) can be represented as sums over the partial quotients of the continued fraction expansion of the rational dc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{d}{c}$$\end{document}. Hardy sums, the analog integer-valued sums arising in the transformation of the logarithms of theta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document}-functions under a subgroup of the modular group, have been shown to satisfy many properties which mirror the properties of the classical Dedekind sums. The representation as sums of partial quotients has, however, been missing so far. We define non-classical continued fractions and prove that Hardy sums can be expressed as a sums of partial quotients of these continued fractions. As an application, we prove that the graph of the Hardy sums is dense in RxZ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{R}\times \textbf{Z}$$\end{document}.
引用
收藏
页码:107 / 128
页数:22
相关论文
共 50 条
  • [21] Distribution of values of Hardy sums over Chebyshev polynomials
    Wang, Jiankang
    Xu, Zhefeng
    Jia, Minmin
    AIMS MATHEMATICS, 2024, 9 (02): : 3788 - 3797
  • [22] COMMENSURABLE CONTINUED FRACTIONS
    Arnoux, Pierre
    Schmidt, Thomas A.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (11) : 4389 - 4418
  • [23] Generalized continued fractions
    Choe, GH
    APPLIED MATHEMATICS AND COMPUTATION, 2000, 109 (2-3) : 287 - 299
  • [24] A generalization of continued fractions
    Anselm, Maxwell
    Weintraub, Steven H.
    JOURNAL OF NUMBER THEORY, 2011, 131 (12) : 2442 - 2460
  • [25] Continued fractions and Stern polynomials
    Dilcher, Karl
    Ericksen, Larry
    RAMANUJAN JOURNAL, 2018, 45 (03): : 659 - 681
  • [26] CONTINUED FRACTIONS AND LINEAR RECURRENCES
    LENSTRA, HW
    SHALLIT, JO
    MATHEMATICS OF COMPUTATION, 1993, 61 (203) : 351 - 354
  • [27] On a theorem of Serret on continued fractions
    Bengoechea, Paloma
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2016, 110 (02) : 379 - 384
  • [28] Continued fractions and the Markoff tree
    Bombieri, Enrico
    EXPOSITIONES MATHEMATICAE, 2007, 25 (03) : 187 - 213
  • [29] OPTIMAL APPROXIMATION BY CONTINUED FRACTIONS
    BOSMA, W
    KRAAIKAMP, C
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1991, 50 : 481 - 504
  • [30] Pade approximation and continued fractions
    Lorentzen, Lisa
    APPLIED NUMERICAL MATHEMATICS, 2010, 60 (12) : 1364 - 1370