Clinical Validation of a Deep Learning Algorithm for Automated Coronary Artery Disease Detection and Classification Using a Heterogeneous Multivendor Coronary Computed Tomography Angiography Data Set

被引:4
作者
Muscogiuri, Emanuele [1 ,3 ]
van Assen, Marly [1 ]
Tessarin, Giovanni [1 ,4 ,5 ]
Razavi, Alexander C. [2 ]
Schoebinger, Max [6 ]
Wels, Michael [6 ]
Gulsun, Mehmet Akif [7 ]
Sharma, Puneet [7 ]
Fung, George S. K. [8 ]
De Cecco, Carlo N. [1 ]
机构
[1] Emory Univ Hosp, Emory Healthcare Inc, Dept Radiol & Imaging Sci, Div Cardiothorac Imaging, Atlanta, GA USA
[2] Emory Univ Hosp, Dept Cardiol, Emory Healthcare Inc, Atlanta, GA USA
[3] Univ Hosp Leuven, Dept Radiol, Div Thorac Imaging, Leuven, Belgium
[4] Univ Padua, Inst Radiol, Dept Med DIMED, Padua, Italy
[5] Ca Foncello Gen Hosp, Dept Radiol, Treviso, Italy
[6] Siemens Healthineers, Computed Tomog, Forchheim, Germany
[7] Siemens Healthineers, Princeton, NJ USA
[8] Siemens Healthineers, Malvern, PA USA
关键词
deep learning; artificial intelligence; coronary artery disease; Coronary Artery Disease-Reporting and Data System; computed tomography; EXPERT CONSENSUS DOCUMENT; NORTH-AMERICAN SOCIETY; DATA SYSTEM; CAD-RADS(TM); COLLEGE;
D O I
10.1097/RTI.0000000000000798
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: We sought to clinically validate a fully automated deep learning (DL) algorithm for coronary artery disease (CAD) detection and classification in a heterogeneous multivendor cardiac computed tomography angiography data set. Materials and Methods: In this single-centre retrospective study, we included patients who underwent cardiac computed tomography angiography scans between 2010 and 2020 with scanners from 4 vendors (Siemens Healthineers, Philips, General Electrics, and Canon). Coronary Artery Disease-Reporting and Data System (CAD-RADS) classification was performed by a DL algorithm and by an expert reader (reader 1, R1), the gold standard. Variability analysis was performed with a second reader (reader 2, R2) and the radiologic reports on a subset of cases. Statistical analysis was performed stratifying patients according to the presence of CAD (CAD-RADS >0) and obstructive CAD (CAD-RADS >= 3). Results: Two hundred ninety-six patients (average age: 53.66 +/- 13.65, 169 males) were enrolled. For the detection of CAD only, the DL algorithm showed sensitivity, specificity, accuracy, and area under the curve of 95.3%, 79.7%, 87.5%, and 87.5%, respectively. For the detection of obstructive CAD, the DL algorithm showed sensitivity, specificity, accuracy, and area under the curve of 89.4%, 92.8%, 92.2%, and 91.1%, respectively. The variability analysis for the detection of obstructive CAD showed an accuracy of 92.5% comparing the DL algorithm with R1, and 96.2% comparing R1 with R2 and radiology reports. The time of analysis was lower using the DL algorithm compared with R1 (P < 0.001). Conclusions: The DL algorithm demonstrated robust performance and excellent agreement with the expert readers' analysis for the evaluation of CAD, which also corresponded with significantly reduced image analysis time.
引用
收藏
页数:9
相关论文
共 22 条
[1]   Coronary Computed Tomography Angiography From Clinical Uses to Emerging Technologies JACC State-of-the-Art Review [J].
Abdelrahman, Khaled M. ;
Chen, Marcus Y. ;
Dey, Amit K. ;
Virmani, Renu ;
Finn, Aloke V. ;
Khamis, Ramzi Y. ;
Choi, Andrew D. ;
Min, James K. ;
Williams, Michelle C. ;
Buckler, Andrew J. ;
Taylor, Charles A. ;
Rogers, Campbell ;
Samady, Habib ;
Antoniades, Charalambos ;
Shaw, Leslee J. ;
Budoff, Matthew J. ;
Hoffmann, Udo ;
Blankstein, Ron ;
Narula, Jagat ;
Mehta, Nehal N. .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2020, 76 (10) :1226-1243
[2]   Machine learning-based coronary artery disease diagnosis: A comprehensive review [J].
Alizadehsani, Roohallah ;
Abdar, Moloud ;
Roshanzamir, Mohamad ;
Khosravi, Abbas ;
Kebria, Parham M. ;
Khozeimeh, Fahime ;
Nahavandi, Saeid ;
Sarrafzadegan, Nizal ;
Acharya, U. Rajendra .
COMPUTERS IN BIOLOGY AND MEDICINE, 2019, 111
[3]   Prognostic Value of Coronary CTA in Stable Chest Pain CAD-RADS, CAC, and Cardiovascular Events in PROMISE [J].
Bittner, Daniel O. ;
Mayrhofer, Thomas ;
Budoff, Matt ;
Szilveszter, Balint ;
Foldyna, Borek ;
Hallett, Travis R. ;
Ivanov, Alexander ;
Janjua, Sumbal ;
Meyersohn, Nandini M. ;
Staziaki, Pedro, V ;
Achenbach, Stephan ;
Ferencik, Maros ;
Douglas, Pamela S. ;
Hoffmann, Udo ;
Lu, Michael T. .
JACC-CARDIOVASCULAR IMAGING, 2020, 13 (07) :1534-1545
[4]   CT Evaluation by Artificial Intelligence for Atherosclerosis, Stenosis and Vascular Morphology (CLARIFY): A Multi-center, international study [J].
Choi, Andrew D. ;
Marques, Hugo ;
Kumar, Vishak ;
Griffin, William F. ;
Rahban, Habib ;
Karlsberg, Ronald P. ;
Zeman, Robert K. ;
Katz, Richard J. ;
Earls, James P. .
JOURNAL OF CARDIOVASCULAR COMPUTED TOMOGRAPHY, 2021, 15 (06) :470-476
[5]   CAD-RADS™ Coronary Artery Disease - Reporting and Data System. An expert consensus document of the Society of Cardiovascular Computed Tomography (SCCT), the American College of Radiology (ACR) and the North American Society for Cardiovascular Imaging (NASCI). Endorsed by the American College of Cardiology [J].
Cury, Ricardo C. ;
Abbara, Suhny ;
Achenbach, Stephan ;
Agatston, Arthur ;
Berman, Daniel S. ;
Budoff, Matthew J. ;
Dill, Karin E. ;
Jacobs, Jill E. ;
Maroules, Christopher D. ;
Rubin, Geoffrey D. ;
Rybicki, Frank J. ;
Schoepf, U. Joseph ;
Shaw, Leslee J. ;
Stillman, Arthur E. ;
White, Charles S. ;
Woodard, Pamela K. ;
Leipsic, Jonathon A. .
JOURNAL OF CARDIOVASCULAR COMPUTED TOMOGRAPHY, 2016, 10 (04) :269-281
[6]   Nonobstructive Coronary Artery Disease by Coronary CT Angiography Improves Risk Stratification and Allocation of Statin Therapy [J].
Emami, Hamed ;
Takx, Richard A. P. ;
Mayrhofer, Thomas ;
Janjua, Sumbal ;
Park, Jakob ;
Pursnani, Amit ;
Tawakol, Ahmed ;
Lu, Michael T. ;
Ferencik, Maros ;
Hoffmann, Udo .
JACC-CARDIOVASCULAR IMAGING, 2017, 10 (09) :1031-1038
[7]  
Fischer A, 2020, J Cardiovasc Comput Tomogr, V14, pS21, DOI DOI 10.1016/J.JCCT.2020.06.019
[8]   Image quality in coronary CT angiography: challenges and technical solutions [J].
Ghekiere, Olivier ;
Salgado, Rodrigo ;
Buls, Nico ;
Leiner, Tim ;
Mancini, Isabelle ;
Vanhoenacker, Piet ;
Dendale, Paul ;
Nchimi, Alain .
BRITISH JOURNAL OF RADIOLOGY, 2017, 90 (1072)
[9]   2021 AHA/ACC/ASE/CHEST/SAEM/ SCCT/SCMR Guideline for the Evaluation and Diagnosis of Chest Pain: Executive Summary A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines [J].
Gulati, Martha ;
Levy, Phillip D. ;
Mukherjee, Debabrata ;
Amsterdam, Ezra ;
Bhatt, Deepak L. ;
Birtcher, Kim K. ;
Blankstein, Ron ;
Boyd, Jack ;
Bullock-Palmer, Renee P. ;
Conejo, Theresa ;
Diercks, Deborah B. ;
Gentile, Federico ;
Greenwood, John P. ;
Hess, Erik P. ;
Hollenberg, Steven M. ;
Jaber, Wael A. ;
Jneid, Hani ;
Joglar, Jose A. ;
Morrow, David A. ;
O'Connor, Robert E. ;
Ross, Michael A. ;
Shaw, Leslee J. .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2021, 78 (22) :2218-2261
[10]  
Gulsun Mehmet A., 2016, Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016. 19th International Conference. Proceedings: LNCS 9902, P317, DOI 10.1007/978-3-319-46726-9_37