The impact of heat exchanger loop configuration on heat transfer in energy piles

被引:2
作者
Faizal, Mohammed [1 ]
Bouazza, Abdelmalek [1 ]
Mccartney, John S. [2 ]
机构
[1] Monash Univ, Dept Civil Engn, Clayton, Vic 3800, Australia
[2] Univ Calif San Diego, Dept Struct Engn, 9500 Gilman Dr,SME 442J, La Jolla, CA 92093 USA
基金
澳大利亚研究理事会;
关键词
Energy piles; Field tests; Group effects; Parallel U -loops; Series U -loops; Heat exchange; GROUND TEMPERATURE; THERMAL RESPONSE; THERMOMECHANICAL BEHAVIOR; U-TUBE; PERFORMANCE; FOUNDATIONS; PIPE; CONDUCTIVITY; INTERFERENCE; DESIGN;
D O I
10.1016/j.gete.2025.100639
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This paper examines the impact of parallel and series U-loop configurations on heat transfer in energy piles. Heating experiments were conducted on a set of four field-scale energy piles installed under a five-storey building, sharing identical dimensions (diameter = 0.9 m and length = 15 m) but varying numbers of U-loops (loops 1, 2, 3, and 4, in Piles 1, 2, 3, and 4, respectively). The investigation highlights the significance of fluid flow, temperature, U-loop quantity and configuration on heat transfer within solitary and grouped energy piles. In the parallel configuration, heat exchange occurs concurrently across all U-loops, proportional to the flow rate. Conversely, in the series configuration, the initial U-loops dominate heat exchange, with subsequent U-loops showing diminished effectiveness in contributing to the overall heat transfer. For identical flow rates in the individual U-loops of both configurations, the group of energy piles employing parallel U-loops exhibited higher heat exchange. The findings provide practical insights into optimising U-loop configurations to improve heat exchange between the pile and the surrounding soil under the studied boundary conditions.
引用
收藏
页数:9
相关论文
共 66 条
[1]   Counterbalancing ambient interference on thermal conductivity tests for energy piles [J].
Abdelaziz, Sherif L. ;
Olgun, C. Guney ;
Martin, James R., II .
GEOTHERMICS, 2015, 56 :45-59
[2]   Energy from earth-coupled structures, foundations, tunnels and sewers [J].
Adam, D. ;
Markiewicz, R. .
GEOTECHNIQUE, 2009, 59 (03) :229-236
[3]   Thermo-mechanical behavior of energy piles in high plasticity clays [J].
Akrouch, Ghassan Anis ;
Sanchez, Marcelo ;
Briaud, Jean-Louis .
ACTA GEOTECHNICA, 2014, 9 (03) :399-412
[4]  
Ayaz H, 2022, SOILS ROCKS, V45, DOI [10.28927/SR.2022.076521, 10.28927/sr.2022.076521]
[5]   Evaluation of soil thermal conductivity models [J].
Barry-Macaulay, D. ;
Bouazza, A. ;
Wang, B. ;
Singh, R. M. .
CANADIAN GEOTECHNICAL JOURNAL, 2015, 52 (11) :1892-1900
[6]   Thermal conductivity of soils and rocks from the Melbourne (Australia) regiond [J].
Barry-Macaulay, D. ;
Bouazza, A. ;
Singh, R. M. ;
Wang, B. ;
Ranjith, P. G. .
ENGINEERING GEOLOGY, 2013, 164 :131-138
[7]   Energy and geotechnical behaviour of energy piles for different design solutions [J].
Batini, Niccolo ;
Rotta Loria, Alessandro F. ;
Conti, Paolo ;
Testi, Daniele ;
Grassi, Walter ;
Laloui, Lyesse .
APPLIED THERMAL ENGINEERING, 2015, 86 :199-213
[8]   Field test of a floating thermal pile in sensitive clay [J].
Bergstrom, Anders ;
Javed, Saqib ;
Dijkstra, Jelke .
GEOTECHNIQUE, 2021, 71 (04) :334-345
[9]  
Bourne-Webb P, 2013, EUR GEOTH C, P1
[10]   Energy pile test at Lambeth College, London: geotechnical and thermodynamic aspects of pile response to heat cycles [J].
Bourne-Webb, P. J. ;
Amatya, B. ;
Soga, K. ;
Amis, T. ;
Davidson, C. ;
Payne, P. .
GEOTECHNIQUE, 2009, 59 (03) :237-248