Uniqueness of least energy solutions to the fractional Lane-Emden equation in the ball

被引:0
作者
Dela Torre, Azahara [2 ]
Parini, Enea [1 ]
机构
[1] Aix Marseille Univ, CNRS, I2M, 3 Pl Victor Hugo, F-13331 Marseille 03, France
[2] Sapienza Univ Roma, Fac Sci Matemat Fis & Nat, Dipartimento Matemat Guido Castelnuovo, Piazzale Aldo Moro 5, I-00185 Rome, RM, Italy
关键词
NONLINEAR EQUATIONS; REGULARITY; SYMMETRY;
D O I
10.1007/s00208-024-03019-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove uniqueness of least energy solutions to the fractional Lane-Emden equation, under homogeneous Dirichlet exterior conditions, when the underlying domain is a ball B subset of RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B \subset \mathbb {R}<^>N$$\end{document}. The equation is characterized by a superlinear, subcritical power-like nonlinearity. The proof makes use of Morse theory and is inspired by some results obtained by C. S. Lin in the '90s. A new Hopf's Lemma-type result shown in this paper is an essential element in the proof of nondegeneracy of least energy solutions.
引用
收藏
页码:3987 / 4010
页数:24
相关论文
共 34 条
[1]  
Almgren F., 1989, J Amer Math Soc, V2, P683
[2]   NONRADIALITY OF SECOND EIGENFUNCTIONS OF THE FRACTIONAL LAPLACIAN IN A BALL [J].
Benedikt, Jiri ;
Bobkov, Vladimir ;
Dhara, Raj ;
Girg, Petr .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 150 (12) :5335-5348
[3]   Comparison results and steady states for the Fujita equation with fractional Laplacian [J].
Birkner, M ;
López-Mimbela, JA ;
Wakolbinger, A .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2005, 22 (01) :83-97
[4]   The fractional Cheeger problem [J].
Brasco, L. ;
Lindgren, E. ;
Parini, E. .
INTERFACES AND FREE BOUNDARIES, 2014, 16 (03) :419-458
[5]   The second eigenvalue of the fractional p-Laplacian [J].
Brasco, Lorenzo ;
Parini, Enea .
ADVANCES IN CALCULUS OF VARIATIONS, 2016, 9 (04) :323-355
[6]   CONVEXITY PROPERTIES OF DIRICHLET INTEGRALS AND PICONE-TYPE INEQUALITIES [J].
Brasco, Lorenzo ;
Franzina, Giovanni .
KODAI MATHEMATICAL JOURNAL, 2014, 37 (03) :769-799
[7]   Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, and Hamiltonian estimates [J].
Cabre, Xavier ;
Sire, Yannick .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2014, 31 (01) :23-53
[8]   An extension problem related to the fractional Laplacian [J].
Caffarelli, Luis ;
Silvestre, Luis .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (7-9) :1245-1260
[9]   Uniqueness of entire ground states for the fractional plasma problem [J].
Chan, Hardy ;
Gonzalez, Maria Del Mar ;
Huang, Yanghong ;
Mainini, Edoardo ;
Volzone, Bruno .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2020, 59 (06)
[10]  
Daalhuis A. B. Olde, 2010, NIST HDB MATH FUNCTI, P383