A parameter identification method of lithium ion battery electrochemical model based on combination of classifier and heuristic algorithm

被引:0
|
作者
Wang, Yaxuan [1 ]
Li, Junfu [2 ,4 ]
Guo, Shilong [1 ]
Sun, Meiyan [1 ]
Deng, Liang [1 ]
Zhao, Lei [1 ]
Wang, Zhenbo [1 ,3 ,5 ]
机构
[1] Harbin Inst technol, State Key Lab Space Power Sources, Harbin 150001, Heilongjiang, Peoples R China
[2] Harbin Inst Technol Weihai, Sch Automot Engn, Weihai 264209, Shandong, Peoples R China
[3] Shenzhen Univ, Coll Mat Sci & Engn, Shenzhen 518071, Guangdong, Peoples R China
[4] Harbin Inst Technol Weihai, Coll Oceanol, 2 West Wenhua Rd, Weihai 264209, Shandong, Peoples R China
[5] Harbin Inst Technol, Sch Mechatron Engn, 92 Xidazhi St, Harbin 150001, Heilongjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-ion battery; Electrochemical model; Parameter identification; Machine learning; Classifier; OPTIMIZATION; DISCHARGE;
D O I
10.1016/j.est.2024.114497
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Parameters of lithium-ion electrochemical battery model have a great impact on the simulation accuracy, so their accurate identification plays an important role in terms of battery characteristic simulation and health management. Currently, global optimization algorithm is a common method for lithium-ion battery parameter identification, however this kind of method may lead to local optimization, which fails to get accurate identification results. In the search range of the global optimization algorithm, there are certain parameter vectors that may cause the battery model to not converge. Such parameters reduce the computing efficiency seriously. This work proposes a new parameter identification method for lithium-ion battery electrochemical model, which combines machine learning based classifier with improved particle swarm optimization algorithm. The classifier is used to filter the parameter vectors in the swarm generated by improved particle swarm optimization algorithm that may make the battery model fail to converge. The classification accuracy is up to over 90 %. Validation results indicate that the battery model with identified parameters obtained by the developed method has acceptable simulation accuracy, and the terminal voltage simulation errors are within 24.6 mV. Also, the parameter identification method can significantly improve the efficiency of parameter identification.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Life-cycle parameter identification method of an electrochemical model for lithium-ion battery pack
    Yu, Hanqing
    Li, Junfu
    Ji, Yukun
    Pecht, Michael
    JOURNAL OF ENERGY STORAGE, 2022, 47
  • [2] Electrochemical model parameter identification of a lithium-ion battery using particle swarm optimization method
    Rahman, Md Ashiqur
    Anwar, Sohel
    Izadian, Afshin
    JOURNAL OF POWER SOURCES, 2016, 307 : 86 - 97
  • [3] Parameter Identification of Lithium-Ion Battery Model Based on African Vultures Optimization Algorithm
    Fahmy, Hend M.
    Sweif, Rania A.
    Hasanien, Hany M.
    Tostado-Veliz, Marcos
    Alharbi, Mohammed
    Jurado, Francisco
    MATHEMATICS, 2023, 11 (09)
  • [4] Parameter Identification of Lithium Battery Model Based on Simulated Annealing Algorithm
    Luo Y.
    Qi P.
    Kan Y.
    Li P.
    Liu L.
    Cui H.
    Qiche Gongcheng/Automotive Engineering, 2018, 40 (12): : 1418 - 1425
  • [5] Parameter Identification of Electrochemical Model for Vehicular Lithium-Ion Battery Based on Particle Swarm Optimization
    Yang, Xiao
    Chen, Long
    Xu, Xing
    Wang, Wei
    Xu, Qiling
    Lin, Yuzhen
    Zhou, Zhiguang
    ENERGIES, 2017, 10 (11):
  • [6] Parameter Identification of Lithium Battery Model Based on Improved Fireworks Algorithm
    Li, Jiange
    Wu, Yong
    He, Xiuzhu
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 1255 - 1260
  • [7] Electrochemical Model Parameter Identification of Lithium-Ion Battery with Temperature and Current Dependence
    Chen, Long
    Xu, Ruyu
    Rao, Weining
    Li, Huanhuan
    Wang, Ya-Ping
    Yang, Tao
    Jiang, Hao-Bin
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2019, 14 (05): : 4124 - 4143
  • [8] Parameter identification of an electrochemical lithium-ion battery model with convolutional neural network
    Chun, Huiyong
    Kim, Jungsoo
    Han, Soohee
    IFAC PAPERSONLINE, 2019, 52 (04): : 129 - 134
  • [9] Simulation and parameter identification based on electrochemical-thermal coupling model of power lithium ion-battery
    Liu, Yu
    Tang, Shui
    Li, Lixiang
    Liu, Fangyang
    Jiang, Liangxing
    Jia, Ming
    Ai, Yan
    Yao, Chunmei
    Gu, Huijun
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 844
  • [10] Dynamic Parameter Identification of Mathematical Model of Lithium-Ion Battery Based on Least Square Method
    Li, Rui
    Yu, Jialing
    Zhang, Yingchao
    Wang, Zican
    Lei, Yu
    He, Junqiang
    2018 IEEE INTERNATIONAL POWER ELECTRONICS AND APPLICATION CONFERENCE AND EXPOSITION (PEAC), 2018, : 1410 - 1414