Elemental diffusion coefficient prediction in conventional alloys using machine learning

被引:0
|
作者
Kulathuvayal, Arjun S. [1 ]
Rao, Yi [2 ]
Su, Yanqing [1 ]
机构
[1] Utah State Univ, Dept Mech & Aerosp Engn, Logan, UT 84322 USA
[2] Utah State Univ, Dept Chem & Biochem, Logan, UT 84322 USA
来源
CHEMICAL PHYSICS REVIEWS | 2024年 / 5卷 / 04期
基金
美国国家科学基金会;
关键词
SOLUTION HEAT-TREATMENT; IRREVERSIBLE-PROCESSES; MECHANICAL-PROPERTIES; RECIPROCAL RELATIONS; TRACER-DIFFUSION; SELF-DIFFUSION; SIMULATION;
D O I
10.1063/5.0222001
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This paper presents the Machine Learned Diffusion Coefficient Estimator, a comprehensive machine learning framework designed to predict diffusion coefficients in impure metallic (IM) and multi-component alloy (MCA) media. The framework incorporates five machine learning models, each tailored to specific diffusion modes: (1) impurity and (2) self-diffusion in IM media, and (3) self, (4) impurity, and (5) chemical diffusion in MCA media. These models use statistical aggregations of atomic descriptors for both the diffusing elements and the diffusion media, along with the temperature of the diffusion process, as features. Models are trained using the random forest and deep neural network algorithms, with performance evaluated through the coefficient of determination (R-2), mean squared error (MSE), and uncertainty estimates. The models within this framework achieve an impressive R-2 score above 0.90 with MSE less than 10(-16) m(2)/s, demonstrating high predictive accuracy and reliability for diffusion coefficient.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Prediction of Chloride Diffusion Coefficient in Concrete Modified with Supplementary Cementitious Materials Using Machine Learning Algorithms
    Al Fuhaid, Abdulrahman Fahad
    Alanazi, Hani
    MATERIALS, 2023, 16 (03)
  • [2] Prediction of coefficient of consolidation in soil using machine learning techniques
    Mittal, Mamta
    Satapathy, Suresh Chandra
    Pal, Vaibhav
    Agarwal, Basant
    Goyal, Lalit Mohan
    Parwekar, Pritee
    MICROPROCESSORS AND MICROSYSTEMS, 2021, 82
  • [3] Osteoporosis Risk Prediction Using Machine Learning and Conventional Methods
    Kim, Sung Kean
    Yoo, Tae Keun
    Oh, Ein
    Kim, Deok Won
    2013 35TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2013, : 188 - 191
  • [4] Prediction of Chloride Diffusion Coefficient in Concrete Based on Machine Learning and Virtual Sample Algorithm
    Zhou, Fei-Yu
    Tao, Ning-Jing
    Zhang, Yu-Rong
    Yuan, Wei-Bin
    SUSTAINABILITY, 2023, 15 (24)
  • [5] Prediction of phases in high entropy alloys using machine learning
    Bobbili, Ravindranadh
    Ramakrishna, B.
    MATERIALS TODAY COMMUNICATIONS, 2023, 36
  • [6] Prediction of the Diffusion Coefficient through Machine Learning Based on Transition-State Theory Descriptors
    Ren, Emmanuel
    Coudert, Francois-Xavier
    JOURNAL OF PHYSICAL CHEMISTRY C, 2024, 128 (16): : 6917 - 6926
  • [7] Prediction of concrete coefficient of thermal expansion and other properties using machine learning
    Nilsen, Vanessa
    Pham, Le T.
    Hibbard, Michael
    Klager, Adam
    Cramer, Steven M.
    Morgan, Dane
    CONSTRUCTION AND BUILDING MATERIALS, 2019, 220 : 587 - 595
  • [8] Firm Performance Prediction for Macroeconomic Diffusion Index using Machine Learning
    Cu Nguyen Giap
    Dao The Son
    Dinh Thi Ha
    Vu Quang Huy
    Do Thi Thu Hien
    Le Mai Trang
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2021, 12 (06) : 87 - 99
  • [9] Risk Prediction of Femoral Neck Osteoporosis Using Machine Learning and Conventional Methods
    Yoo, Tae Keun
    Kim, Sung Kean
    Oh, Ein
    Kim, Deok Won
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, PT II, 2013, 7903 : 181 - +
  • [10] Prediction of sintered density of binary W(Mo) alloys using machine learning
    He-Xiong Liu
    Yun-Fei Yang
    Yong-Feng Cai
    Chang-Hao Wang
    Chen Lai
    Yao-Wu Hao
    Jin-Shu Wang
    Rare Metals, 2023, 42 (08) : 2713 - 2724