Local magnetoelectric effect in Fe3O4-BaTiO3 nanocomposites

被引:0
作者
Kanurin, D. A. [1 ]
Amirov, A. A. [2 ]
Liu, N. N. [1 ]
Nizamov, T. R. [2 ]
Alekhina, Yu. A. [1 ]
Kritskiy, A. A. [3 ]
Platonova, I. V. [1 ]
Perov, N. S. [1 ]
Tishin, A. M. [1 ]
机构
[1] Lomonosov Moscow State Univ, Phys Fac, Moscow 119991, Russia
[2] Natl Univ Sci & Technol Misis, Dept Phys Mat Sci, Moscow 119049, Russia
[3] AMT & C Grp, LLC Magnet Drug Delivery, 4 Promyshlennaya Str, Troitsk 108840, Moscow, Russia
基金
俄罗斯科学基金会;
关键词
Magnetoelectric effect; Magnetic nanoparticles; Magnetoelectric nanoparticles; Multiferroic nanocomposites; iron oxide; Piezoresponse force microscopy; magnetostriction; Biomedical relevance; BRAIN-COMPUTER INTERFACE; TEMPERATURE; CERAMICS;
D O I
10.1007/s11051-025-06305-2
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Magnetoelectric nanoparticles (MENPs) are promising for biomedical applications. While cobalt ferrite-based MENPs exhibit strong magnetic properties, their biocompatibility remains uncertain. This study proposes iron oxide (FO) nanoparticles as a less toxic alternative and investigates the structural, crystalline, magnetic, and magnetoelectric (ME) properties of FO@BTO nanocomposites, where FO and barium titanate (BTO) provide magnetostrictive and piezoelectric functionalities, respectively. FO nanoparticles of three sizes (12.7, 25.9, and 47.7 nm) were synthesized and coated with BTO. Characterization using TEM, VSM, and XRD revealed that after annealing at 700 degrees C, BTO crystallite sizes increased from 8-9 nm to 11-13 nm. FO crystallite sizes remained stable for the 12.7 nm core sample but increased from 12.3 to 14.9 nm and from 12.8 to 17.0 nm for the 25.9 nm and 47.7 nm samples, respectively. VSM measurements show increasing coercivity and remanent magnetization with FO size: 12.7 nm cores exhibit superparamagnetic behavior (Hc = 0.1 Oe, Mr = 0.2 emu/g), while 47.7 nm cores show ferromagnetic behavior (Hc = 40.1 Oe, Mr = 10.9 emu/g). After BTO coating and annealing, magnetic characteristics decreased. The longitudinal magnetostriction coefficient was 6.5 ppm for 12.7 nm FO, 6.8 ppm for 25.9 nm, and 14.6 ppm for 47.7 nm. Piezoresponse force microscopy confirmed ME coupling, showing variations in the piezoelectric response under an applied magnetic field. These results highlight the potential of FO@BTO MENPs for magnetically controlled biomedical applications.
引用
收藏
页数:20
相关论文
共 67 条
[1]   Versatile seed-mediated method of CoxFe3-xO4 nanoparticles synthesis in glycol media via thermal decomposition [J].
Abakumov, Maxim ;
Nizamov, Timur ;
Li, Yanchen ;
Shchetinin, Igor ;
Savchenko, Alexander ;
Zhukov, Dmitry ;
Majouga, Alexander .
MATERIALS LETTERS, 2020, 276 (276)
[2]  
Abiri R, 2020, IEEE T HUM-MACH SYST, V50, P287, DOI [10.1109/thms.2020.2983848, 10.1109/THMS.2020.2983848]
[3]  
Achary SN, 2012, FUNCTIONAL MATERIALS: PREPARATION, PROCESSING AND APPLICATIONS, P155, DOI 10.1016/B978-0-12-385142-0.00004-0
[4]  
Allison BZ, 2010, HUM-COMPUT INT-SPRIN, P35, DOI 10.1007/978-1-84996-272-8_3
[5]   Systems for deep brain stimulation: review of technical features [J].
Amon, A. ;
Alesch, F. .
JOURNAL OF NEURAL TRANSMISSION, 2017, 124 (09) :1083-1091
[6]   Biomedical applications of multifunctional magnetoelectric nanoparticles [J].
Apu, Ehsanul Hoque ;
Nafiujjaman, Md ;
Sandeep, Srikumar ;
Makela, Ashley, V ;
Khaleghi, Ali ;
Vainio, Seppo ;
Contag, Christopher H. ;
Li, Jinxing ;
Balasingham, Ilangko ;
Kim, Taeho ;
Ashammakhi, Nureddin .
MATERIALS CHEMISTRY FRONTIERS, 2022, 6 (11) :1368-1390
[7]  
Assanov GS., 2014, KazNU Bulletin, Ser Phys, V2, P45
[8]   Magnetically Polarizable Energy-Efficient Magnetoelectric Core-Shell Nanocomposites for Magnetic Field Sensing [J].
Beigh, Nadeem Tariq ;
Murali, Nandan ;
Beigh, Faizan Tariq ;
Betal, Soutik ;
Mallick, Dhiman .
IEEE SENSORS JOURNAL, 2024, 24 (15) :23613-23621
[9]  
Belov KP, 1987, Magnitostriktsionniye yavleniya i ikh technicheskiye prilozheniya Magnetostriction phenomena and their technical applications
[10]  
Brezovich I.A., 1988, Medical physics monograph, V16, P82