A Survey of Bias and Fairness in Healthcare AI

被引:2
作者
Mienye, Lbomoiye Domor [1 ]
Obaido, George [2 ]
Emmanuel, Ikiomoye Douglas [3 ]
Ajani, Ayodeji Akeem [4 ]
机构
[1] Walter Sisulu Univ, Dept Informat Technol, Buffalo City Campus, ZA-5200 East London, South Africa
[2] Univ Calif Berkeley, Berkeley Inst Data Sci BIDS, Ctr Human Compatible Artificial Intelligence CHAI, Berkeley, CA 94720 USA
[3] Univ Salford, Sch Sci Engn & Environm, Salford, Lancs, England
[4] Global Banking Sch, Manchester M12 6JH, Lancs, England
来源
2024 IEEE 12TH INTERNATIONAL CONFERENCE ON HEALTHCARE INFORMATICS, ICHI 2024 | 2024年
关键词
artificial intelligence; bias; ethics; fairness; healthcare; machine learning;
D O I
10.1109/ICHI61247.2024.00103
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The integration of artificial intelligence (AI) technologies in healthcare has shown great promise in improving patient outcomes. However, there have been concerns about bias and ethical implications. This review explores the key issues of bias, fairness, and ethical considerations in healthcare AI. The review provides a foundation for future research and policy development in the field of healthcare AI. It will be beneficial to researchers, policymakers, healthcare providers, and technology developers who are involved in the development of AI systems in healthcare.
引用
收藏
页码:642 / 650
页数:9
相关论文
共 65 条
[41]   Is it alright to use artificial intelligence in digital health? A systematic literature review on ethical considerations [J].
Moellmann, Nicholas R. J. ;
Mirbabaie, Milad ;
Stieglitz, Stefan .
HEALTH INFORMATICS JOURNAL, 2021, 27 (04)
[42]   Bias Discovery in Machine Learning Models for Mental Health [J].
Mosteiro, Pablo ;
Kuiper, Jesse ;
Masthoff, Judith ;
Scheepers, Floortje ;
Spruit, Marco .
INFORMATION, 2022, 13 (05)
[43]   Accountability in artificial intelligence: what it is and how it works [J].
Novelli, Claudio ;
Taddeo, Mariarosaria ;
Floridi, Luciano .
AI & SOCIETY, 2024, 39 (04) :1871-1882
[44]   Bias in data-driven artificial intelligence systems-An introductory survey [J].
Ntoutsi, Eirini ;
Fafalios, Pavlos ;
Gadiraju, Ujwal ;
Iosifidis, Vasileios ;
Nejdl, Wolfgang ;
Vidal, Maria-Esther ;
Ruggieri, Salvatore ;
Turini, Franco ;
Papadopoulos, Symeon ;
Krasanakis, Emmanouil ;
Kompatsiaris, Ioannis ;
Kinder-Kurlanda, Katharina ;
Wagner, Claudia ;
Karimi, Fariba ;
Fernandez, Miriam ;
Alani, Harith ;
Berendt, Bettina ;
Kruegel, Tina ;
Heinze, Christian ;
Broelemann, Klaus ;
Kasneci, Gjergji ;
Tiropanis, Thanassis ;
Staab, Steffen .
WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2020, 10 (03)
[45]   An Interpretable Machine Learning Approach for Hepatitis B Diagnosis [J].
Obaido, George ;
Ogbuokiri, Blessing ;
Swart, Theo G. ;
Ayawei, Nimibofa ;
Kasongo, Sydney Mambwe ;
Aruleba, Kehinde ;
Mienye, Ibomoiye Domor ;
Aruleba, Idowu ;
Chukwu, Williams ;
Osaye, Fadekemi ;
Egbelowo, Oluwaseun F. ;
Simphiwe, Simelane ;
Esenogho, Ebenezer .
APPLIED SCIENCES-BASEL, 2022, 12 (21)
[46]   Toward AI Governance: Identifying Best Practices and Potential Barriers and Outcomes [J].
Papagiannidis, Emmanouil ;
Enholm, Ida Merete ;
Dremel, Chirstian ;
Mikalef, Patrick ;
Krogstie, John .
INFORMATION SYSTEMS FRONTIERS, 2023, 25 (01) :123-141
[47]   Likelihood of Questioning AI-Based Recommendations Due to Perceived Racial/Gender Bias [J].
Parra, Carlos M. ;
Gupta, Manjul ;
Dennehy, Denis .
IEEE Transactions on Technology and Society, 2022, 3 (01) :41-45
[48]   Analysis of Artificial Intelligence-Based Approaches Applied to Non-Invasive Imaging for Early Detection of Melanoma: A Systematic Review [J].
Patel, Raj H. ;
Foltz, Emilie A. ;
Witkowski, Alexander ;
Ludzik, Joanna .
CANCERS, 2023, 15 (19)
[49]   Trust, but Verify: Informed Consent, AI Technologies, and Public Health Emergencies [J].
Pickering, Brian .
FUTURE INTERNET, 2021, 13 (05)
[50]   Fairness in rankings and recommendations: an overview [J].
Pitoura, Evaggelia ;
Stefanidis, Kostas ;
Koutrika, Georgia .
VLDB JOURNAL, 2022, 31 (03) :431-458