Evaluation of Polygenic Risk Score for Prediction of Childhood Onset and Severity of Asthma

被引:0
|
作者
Savelieva, Olga [1 ,2 ,3 ]
Karunas, Alexandra [1 ,2 ,4 ]
Prokopenko, Inga [5 ]
Balkhiyarova, Zhanna [5 ]
Gilyazova, Irina [1 ,4 ]
Khidiyatova, Irina [1 ]
Khusnutdinova, Elza [1 ,2 ,3 ,4 ]
机构
[1] Russian Acad Sci, Inst Biochem & Genet, Subdiv Ufa Fed Res Ctr, Ufa 450054, Russia
[2] Ufa Univ Sci & Technol, Fed State Budgetary Educ Inst Higher Educ, Lab Genom & Postgenom Technol, Ufa 450076, Russia
[3] St Petersburg State Univ, Fed State Budgetary Educ Inst Higher Educ, Fac Biol, St Petersburg 199034, Russia
[4] Bashkir State Med Univ, Fed State Budgetary Educ Inst Higher Educ, Dept Med Genet & Fundamental Med, Russian Minist Hlth, Ufa 450008, Russia
[5] Univ Surrey, Dept Clin & Expt Med, Guildford GU2 7XH, England
关键词
asthma; polymorphism; polygenic score; pharmacogenetics; association; GENOME-WIDE ASSOCIATION; GENE; POLYMORPHISMS; PHENOTYPES; RECEPTOR; GLCCI1;
D O I
10.3390/ijms26010103
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Asthma is a common complex disease with susceptibility defined through an interplay of genetic and environmental factors. Responsiveness to asthma treatment varies between individuals and is largely determined by genetic variability. The polygenic score (PGS) approach enables an individual risk of asthma and respective response to drug therapy. PGS models could help to predict the individual risk of asthma using 26 SNPs of drug pathway genes involved in the metabolism of glucocorticosteroids (GCS), and beta-2-agonists, antihistamines, and antileukotriene drugs associated with the response to asthma treatment within GWAS were built. For PGS, summary statistics from the Trans-National Asthma Genetic Consortium GWAS meta-analysis, and genotype data for 882 individuals with asthma/controls from the Volga-Ural region, were used. The study group was comprised of Russian, Tatar, Bashkir, and mixed ethnicity individuals with asthma (N = 378) aged 2-18 years. and individuals without features of atopic disease (N = 504) aged 4-67 years from the Volga-Ural region. The DNA samples for the study were collected from 2000 to 2021. The drug pathway genes' PGS revealed a higher odds for childhood asthma risk (p = 2.41 x 10-12). The receiver operating characteristic (ROC) analysis showed an Area Under the Curve, AUC = 0.63. The AUC of average significance for moderate-to-severe and severe asthma was observed (p = 5.7 x 10-9, AUC = 0.64). Asthma drug response pathway gene variant PGS models may contribute to the development of modern approaches to optimise asthma diagnostics and treatment.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Polygenic Risk Score: An Application to the Prediction of Asthma Risk
    Ricard, Jasmin
    Li, Zhonglin
    Theriault, Sebastien
    Bosse, Yohan
    Eslami, Aida
    GENETIC EPIDEMIOLOGY, 2021, 45 (07) : 785 - 785
  • [2] Evaluation of polygenic risk score for risk prediction of gastric cancer
    Xiao-Yu Wang
    Li-Li Wang
    Lin Xu
    Shu-Zhen Liang
    Meng-Chao Yu
    Qiu-Yue Zhang
    Quan-Jiang Dong
    World Journal of Gastrointestinal Oncology, 2023, 15 (02) : 276 - 285
  • [3] Evaluation of polygenic risk score for risk prediction of gastric cancer
    Wang, Xiao-Yu
    Wang, Li-Li
    Xu, Lin
    Liang, Shu-Zhen
    Yu, Meng-Chao
    Zhang, Qiu-Yue
    Dong, Quan-Jiang
    WORLD JOURNAL OF GASTROINTESTINAL ONCOLOGY, 2023, 15 (02) : 276 - 285
  • [4] Integration of risk factor polygenic risk score with disease polygenic risk score for disease prediction
    Jung, Hyein
    Jung, Hae-Un
    Baek, Eun Ju
    Kwon, Shin Young
    Kang, Ji-One
    Lim, Ji Eun
    Oh, Bermseok
    COMMUNICATIONS BIOLOGY, 2024, 7 (01)
  • [5] Integration of risk factor polygenic risk score with disease polygenic risk score for disease prediction
    Hyein Jung
    Hae-Un Jung
    Eun Ju Baek
    Shin Young Kwon
    Ji-One Kang
    Ji Eun Lim
    Bermseok Oh
    Communications Biology, 7
  • [6] Polygenic Risk Score Prediction for Endometriosis
    Kloeve-Mogensen, Kirstine
    Rohde, Palle Duun
    Twisttmann, Simone
    Nygaard, Marianne
    Koldby, Kristina Magaard
    Steffensen, Rudi
    Dahl, Christian Moller
    Rytter, Dorte
    Overgaard, Michael Toft
    Forman, Axel
    Christiansen, Lene
    Nyegaard, Mette
    FRONTIERS IN REPRODUCTIVE HEALTH, 2021, 3
  • [7] Multiancestral polygenic risk score for pediatric asthma
    Namjou, Bahram
    Lape, Michael
    Malolepsza, Edyta
    DeVore, Stanley B.
    Weirauch, Matthew T.
    Dikilitas, Ozan
    Jarvik, Gail P.
    Kiryluk, Krzysztof
    Kullo, Iftikhar J.
    Liu, Cong
    Luo, Yuan
    Satterfield, Benjamin A.
    Smoller, Jordan W.
    Walunas, Theresa L.
    Connolly, John
    Sleiman, Patrick
    Mersha, Tesfaye B.
    Mentch, Frank D.
    Hakonarson, Hakon
    Prows, Cynthia A.
    Biagini, Jocelyn M.
    Hershey, Gurjit K. Khurana
    Martin, Lisa J.
    Kottyan, Leah
    JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY, 2022, 150 (05) : 1086 - 1096
  • [8] Evaluation of an asthma severity score
    Yung, M
    South, M
    Byrt, T
    JOURNAL OF PAEDIATRICS AND CHILD HEALTH, 1996, 32 (03) : 261 - 264
  • [9] A Polygenic Risk Score for Prostate Cancer Risk Prediction
    Schaffer, Kerry R.
    Shi, Mingjian
    Shelley, John P.
    Tosoian, Jeffrey J.
    Kachuri, Linda
    Witte, John S.
    Mosley, Jonathan D.
    JAMA INTERNAL MEDICINE, 2023, 183 (04) : 386 - 388
  • [10] A polygenic risk score for multiple myeloma risk prediction
    Canzian, Federico
    Piredda, Chiara
    Macauda, Angelica
    Zawirska, Daria
    Andersen, Niels Frost
    Nagler, Arnon
    Zaucha, Jan Maciej
    Mazur, Grzegorz
    Dumontet, Charles
    Watek, Marzena
    Jamroziak, Krzysztof
    Sainz, Juan
    Varkonyi, Judit
    Butrym, Aleksandra
    Beider, Katia
    Abildgaard, Niels
    Lesueur, Fabienne
    Dudzinski, Marek
    Vangsted, Annette Juul
    Pelosini, Matteo
    Subocz, Edyta
    Petrini, Mario
    Buda, Gabriele
    Razny, Malgorzata
    Gemignani, Federica
    Marques, Herlander
    Orciuolo, Enrico
    Kadar, Katalin
    Jurczyszyn, Artur
    Druzd-Sitek, Agnieszka
    Vogel, Ulla
    Andersen, Vibeke
    Reis, Rui Manuel
    Suska, Anna
    Avet-Loiseau, Herve
    Kruszewski, Marcin
    Tomczak, Waldemar
    Rymko, Marcin
    Minvielle, Stephane
    Campa, Daniele
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2022, 30 (04) : 474 - 479