IDHNet: Ultra-Short-Term Wind Power Forecasting With IVMD-DCInformer-HSSA Network

被引:0
作者
Li, Wei [1 ]
Gao, Lu [1 ]
Zhang, Fei [2 ,3 ]
Ren, XiaoYing [2 ,3 ]
Qin, Ling [1 ]
机构
[1] Inner Mongolia Univ Sci &Technol, Sch Digtial & Intelligence Ind, Baotou, Inner Mongolia, Peoples R China
[2] Inner Mongolia Univ Sci & Technol, Sch Automat & Elect Engn, Baotou, Inner Mongolia, Peoples R China
[3] North China Elect Power Univ, Coll Renewable Energy, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Informer; sparrow search algorithm; ultra-short-term wind power forecasting; variational mode decomposition; SPEED; PREDICTION;
D O I
10.1002/ese3.1968
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The variability and unpredictability of wind power generation present significant challenges for grid management and planning. Enhancing the accuracy of wind power forecasting is crucial for improving the reliability of renewable energy systems. To enhance the accuracy of temporal wind power predictions, the IVMD-DCInformer-HSSA framework has been introduced. Initially, the original wind power data is decomposed into multiple intrinsic mode function (IMF) components using the improved variational mode decomposition (IVMD) technique. Subsequently, the Sparrow search algorithm (HSSA) is employed to optimize the parameters of the enhanced Informer deep neural network, which are then integrated into the improved Informer model. The predictions of each IMF component resulting from the IVMD decomposition are then combined to generate the final prediction outcome. The experimental results show that the R-squared value of the proposed combined model is increased to 0.9903, and the accuracy is increased by 1%-3% compared with other models, which has a good prediction effect.
引用
收藏
页码:5566 / 5589
页数:24
相关论文
共 31 条
[1]  
Biyun C., 2013, 2013 IEEE PES AS PAC, P1, DOI [10.1109/APPEEC.2013.6837186, DOI 10.1109/APPEEC.2013.6837186]
[2]  
Cheng J., 2022, SCI TECHNOLOGY ENG, V22, P9645, DOI [10.3969/j.issn.1671-1815.2022.22.025, DOI 10.3969/J.ISSN.1671-1815.2022.22.025]
[3]  
Cheng X., 2023, J KUNMING U SCI TECH, V48, P78
[4]  
Du Y., 2024, J LONGYAN COLL, V42, P20, DOI [10.16813/j.cnki.cn35-1286/g4.2024.02.004, DOI 10.16813/J.CNKI.CN35-1286/G4.2024.02.004]
[5]  
Fan G., 2008, GRID TECHNOLOGY, V22, P72, DOI [10.13335/j.1000-3673.pst.2008.22.020, DOI 10.13335/J.1000-3673.PST.2008.22.020]
[6]  
[付华 Fu Hua], 2022, [控制与决策, Control and Decision], V37, P87
[7]  
Gao L., 2022, SMART GRID, V50, P27, DOI [10.3969/j.issn.1673-7598.2022.04.006, DOI 10.3969/J.ISSN.1673-7598.2022.04.006]
[8]  
Guo, 2017, P CHINESE SOC ELECT, V32, P34, DOI [10.19595/j.cnki.1000-6753.tces.160727, DOI 10.19595/J.CNKI.1000-6753.TCES.160727]
[9]   Transfer learning for short-term wind speed prediction with deep neural networks [J].
Hu, Qinghua ;
Zhang, Rujia ;
Zhou, Yucan .
RENEWABLE ENERGY, 2016, 85 :83-95
[10]  
Huang H., 2024, J NANJING U INFORM S, P332, DOI [10.13878/j.cnki.jnuist.20230903002, DOI 10.13878/J.CNKI.JNUIST.20230903002]