Exact convergence rate of the central limit theorem and polynomial convergence rate for branching processes in a random environment

被引:0
作者
Li, Yingqiu [1 ,3 ]
Zhang, Xin [1 ]
Lu, Zhan [1 ]
Xiao, Sheng [2 ]
机构
[1] Changsha Univ Sci & Technol, Sch Math & Stat, Changsha 410004, Hunan, Peoples R China
[2] Hunan First Normal Univ, Sch Math & Stat, Changsha 410205, Hunan, Peoples R China
[3] Changsha Univ Sci & Technol, Hunan Prov Key Lab Math Modeling & Anal Engn, Changsha 410114, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Branching processes; Random environment; Martingale; Polynomial convergence rate; Exact convergence rate; LARGE DEVIATIONS; MOMENTS;
D O I
10.1016/j.spl.2024.110268
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let (Z(n)) be a supercritical branching process in an independent and identically distributed (i.i.d.)random environment. The paper studies the properties of the estimator M-n = n(-1) Sigma(n-1)(k = 0) (Z(k+1)/Z(k)) introduced by Dion and Esty in 1979. We introduce a related martingale and discuss itsconvergence and exponential convergence rate. On this basis the exact convergence rate of the central limit theorem for normalized M-n is given.
引用
收藏
页数:9
相关论文
共 18 条