Global and Nonglobal Solutions for Pseudo-Parabolic Equation with Inhomogeneous Terms

被引:0
作者
Yang, Chunxiao [1 ]
Fan, Jieyu [1 ]
Gao, Miao [1 ]
机构
[1] Xian Univ Architecture & Technol, Sch Sci, Xian 710055, Peoples R China
来源
JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS | 2024年 / 37卷 / 03期
基金
中国国家自然科学基金;
关键词
Pseudo-parabolic equation; critical Fujita exponent; global solutions; blow-up; CAUCHY-PROBLEM; SOBOLEV-TYPE;
D O I
10.4208/jpde.v37.n3.5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper considers the Cauchy problem of pseudo-parabolic equation with inhomogeneous terms u(t)= triangle u+k triangle u(t)+w(x)u(p)(x,t). In [1], Li et al. gave the critical Fujita exponent, second critical exponent and the life span for blow-up solutions under w(x) = |x |(sigma)with sigma >0. We further generalize the weight function w(x) similar to| x| (sigma )for -2< sigma <0, and discuss the global and non-global solutions to obtain the critical Fujita exponent.
引用
收藏
页码:295 / 308
页数:14
相关论文
共 21 条
[1]   MULTIDIMENSIONAL NON-LINEAR DIFFUSION ARISING IN POPULATION-GENETICS [J].
ARONSON, DG ;
WEINBERGER, HF .
ADVANCES IN MATHEMATICS, 1978, 30 (01) :33-76
[2]  
Barenblatt G., 1960, J. Appl. Math. Mech., V24, P852, DOI DOI 10.1016/0021-8928(60)90107-6
[3]   Initial-boundary value problems for a class of pseudoparabolic equations with integral boundary conditions [J].
Bouziani, A .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 291 (02) :371-386
[4]   A Periodic Problem of a Semilinear Pseudoparabolic Equation [J].
Cao, Yang ;
Yin, Jingxue ;
Jin, Chunhua .
ABSTRACT AND APPLIED ANALYSIS, 2011,
[5]   Cauchy problems of semilinear pseudo-parabolic equations [J].
Cao, Yang ;
Yin, Jingxue ;
Wang, Chunpeng .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (12) :4568-4590
[6]  
Evans L.C., 2010, Graduate Studies in Mathematics, V19
[7]  
FUJITA H, 1966, J FAC SCI U TOKYO 1, V13, P109
[8]   A LEWY-TYPE REFLECTION PRINCIPLE FOR PSEUDOPARABOLIC EQUATIONS [J].
GILBERT, RP .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1980, 37 (02) :261-284
[9]   SOLUTIONS OF PSEUDO-HEAT EQUATIONS IN WHOLE SPACE [J].
GOPALARAO, VR ;
TING, TW .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1972, 49 (01) :57-78
[10]   NONEXISTENCE OF GLOBAL SOLUTIONS OF SOME SEMILINEAR PARABOLIC DIFFERENTIAL EQUATIONS [J].
HAYAKAWA, K .
PROCEEDINGS OF THE JAPAN ACADEMY, 1973, 49 (07) :503-505