Classification of Breast Cancer Histopathological Images with Deep Transfer Learning Methods

被引:0
作者
Tezcan, Cemal Efe [1 ]
Kiras, Berk [1 ]
Bilgin, Gokhan [1 ]
机构
[1] Yildiz Tekn Univ, Signal & Image Proc Lab SIMPLAB, Bilgisayar Muhendisligi Bolumu, TR-34220 Istanbul, Turkiye
来源
2022 30TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU | 2022年
关键词
Histopatholoy; breast cancer; transfer learning; classification; image processing;
D O I
10.1109/SIU55565.2022.9864846
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
It is very important to have a high accuracy rate in detecting cancerous cells in histopathological images. Thanks to high-accuracy images, cancerous cells will be detected more sensitively, and there will be a chance for more accurate and early diagnosis. Thus, a very important preliminary step will be taken in the treatment of cancerous cells. In this study, classification performances were comparatively analyzed by applying various methods to four different cancer cell types (benign, normal, carcinoma in situ and invasive carcinoma). By using BACH and Bioimaging as datasets, the desired parts are tried to be obtained primarily by several image processing methods (pyramid mean shifting, line detection, spreading). After obtaining images of different sizes, their performances are examined by using VGG16, DenseNet121, ResNet50, MobileNetV2, InceptionResNetV2, CNN deep transfer learning methods.
引用
收藏
页数:4
相关论文
共 27 条
[1]  
Albayrak A, 2018, 2018 INNOVATIONS IN INTELLIGENT SYSTEMS AND APPLICATIONS (INISTA)
[2]   Classification of breast cancer histology images using Convolutional Neural Networks [J].
Araujo, Teresa ;
Aresta, Guilherme ;
Castro, Eduardo ;
Rouco, Jose ;
Aguiar, Paulo ;
Eloy, Catarina ;
Polonia, Antonio ;
Campilho, Aurelio .
PLOS ONE, 2017, 12 (06)
[3]   BACH: Grand challenge on breast cancer histology images [J].
Aresta, Guilherme ;
Araujo, Teresa ;
Kwok, Scotty ;
Chennamsetty, Sai Saketh ;
Safwan, Mohammed ;
Alex, Varghese ;
Marami, Bahram ;
Prastawa, Marcel ;
Chan, Monica ;
Donovan, Michael ;
Fernandez, Gerardo ;
Zeineh, Jack ;
Kohl, Matthias ;
Walz, Christoph ;
Ludwig, Florian ;
Braunewell, Stefan ;
Baust, Maximilian ;
Quoc Dang Vu ;
Minh Nguyen Nhat To ;
Kim, Eal ;
Kwak, Jin Tae ;
Galal, Sameh ;
Sanchez-Freire, Veronica ;
Brancati, Nadia ;
Frucci, Maria ;
Riccio, Daniel ;
Wang, Yaqi ;
Sun, Lingling ;
Ma, Kaiqiang ;
Fang, Jiannan ;
Kone, Ismael ;
Boulmane, Lahsen ;
Campilho, Aurelio ;
Eloy, Catarina ;
Polonia, Antonio ;
Aguiar, Paulo .
MEDICAL IMAGE ANALYSIS, 2019, 56 :122-139
[4]  
Celik E., 2021, IEEE MED TECHN C TIP, P1
[5]  
Dabeer S., 2019, Inform. Med. Unlocked, V16, DOI [DOI 10.1016/J.IMU.2019.100231, 10.1016/j.imu.2019.100231]
[6]   Texture CNN for Histopathological Image Classification [J].
de Matos, Jonathan ;
Britto, Alceu de S., Jr. ;
de Oliveira, Luiz E. S. ;
Koerich, Alessandro L. .
2019 IEEE 32ND INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS (CBMS), 2019, :580-583
[7]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[8]  
Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1
[9]   Breast Cancer Histopathology Image Classification Using an Ensemble of Deep Learning Models [J].
Hameed, Zabit ;
Zahia, Sofia ;
Garcia-Zapirain, Begonya ;
Javier Aguirre, Jose ;
Maria Vanegas, Ana .
SENSORS, 2020, 20 (16) :1-17
[10]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778