Effect of active layer thickness on device performance of InSnZnO thin-film transistors grown by atomic layer deposition

被引:0
作者
Zhang, Yu [1 ]
Luo, Binbin [1 ]
Li, Runzhou [1 ]
Wu, Xuefeng [2 ]
Bai, Rongxu [1 ]
Sun, Qingqing [1 ,3 ]
Zhang, David W. [1 ,3 ]
Hu, Shen [1 ,3 ]
Ji, Li [1 ,3 ]
机构
[1] Fudan Univ, Sch Microelect, Shanghai 200433, Peoples R China
[2] Shanghai Integrated Circuit Mfg Innovat Ctr CO LTD, Shanghai 201203, Peoples R China
[3] Jiashan Fudan Inst, Jiaxing 314110, Zhejiang, Peoples R China
关键词
ENHANCEMENT; STABILITY;
D O I
10.1063/5.0249972
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Amorphous oxide semiconductors have garnered significant attention in recent years for their potential in flat-panel displays and back-end-of-line-compatible monolithic 3D (M3D) integration applications. This study explores amorphous InSnZnO thin films deposited via plasma-enhanced atomic layer deposition (PEALD) and the development of high-performance PEALD ITZO thin-film transistors (TFTs) with different active layer thicknesses, fabricated under a low thermal budget of 200 degrees C. By optimizing the deposition process of binary oxides InOx, SnOx, and ZnOx, a shared temperature window of 170-180 degrees C was identified for ITZO thin-film deposition. The deposited ITZO films, irrespective of thickness, exhibit an amorphous phase. Moreover, a reduction in ITZO film thickness from 24 to 4.8 nm leads to an increase in the optical bandgap from 3.35 to 3.65 eV. The channel thickness significantly impacts the threshold voltage and carrier density of ITZO TFTs. Optimized ITZO TFTs with a 16 nm channel thickness demonstrate excellent electrical performance, including a threshold voltage of -0.58 V, a field-effect mobility of 29 cm(2)/V s, an on/off ratio exceeding 10(8), and a subthreshold swing of 74 mV/dec. Furthermore, the optimized ITZO TFT exhibits excellent stability under positive bias stress at 2 MV/cm, with a threshold voltage shift of 0.15 V after 3600 s. Consequently, ALD-based ITZO emerges as a promising channel material for future applications in transparent electronics and flat-panel displays.
引用
收藏
页数:11
相关论文
共 50 条
[41]   Effect of hydroxyl group in polymeric dielectric layer on the performance of organic thin-film transistors and their application for NO2 gas sensor [J].
Shao, Bingyao ;
Han, Shijiao ;
Hou, Sihui ;
Zeng, Hongjuan ;
Yu, Xinge ;
Yu, Junsheng .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2019, 30 (23) :20638-20645
[42]   Reliability enhancement in thin film transistors using Hf and Al co-incorporated ZnO active channels deposited by atomic-layer-deposition [J].
Na, So-Yeong ;
Yoon, Sung-Min .
RSC ADVANCES, 2018, 8 (60) :34215-34223
[43]   Storage stability improvement of pentacene thin-film transistors using polyimide passivation layer fabricated by vapor deposition polymerization [J].
Hyung, Gun Woo ;
Park, Jaehoon ;
Kim, Jun Ho ;
Koo, Ja Ryong ;
Kim, Young Kwan .
SOLID-STATE ELECTRONICS, 2010, 54 (04) :439-442
[44]   Flexible and High-Performance Amorphous Indium Zinc Oxide Thin-Film Transistor Using Low-Temperature Atomic Layer Deposition [J].
Sheng, Jiazhen ;
Lee, Hwan-Jae ;
Oh, Saeroonter ;
Park, Jin-Seong .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (49) :33821-33828
[45]   Device characteristics of amorphous ZnSnLiO thin film transistors with various channel layer thicknesses [J].
Wang, Hailong ;
Li, Bin ;
Zhang, Wenqi ;
Wu, Huaihao ;
Zhou, Dongzhan ;
Yao, Zhigang ;
Yi, Lixin ;
Zhang, Xiqing ;
Wang, Yongsheng .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2016, 122 (08)
[46]   Features of the synthesis of lithium-based ternary oxide nanofilms by atomic layer deposition with LHMDS for thin-film LIBs [J].
Maximov, Maxim Yu. ;
Koshtyal, Yury ;
Mitrofanov, Ilya ;
Ezhov, Ilya ;
Rumyantsev, Aleksander ;
Popovich, Anatoly .
MATERIALS TODAY-PROCEEDINGS, 2020, 25 :6-12
[47]   Investigation of atomic-layer-deposited Al-doped ZnO film for AZO/ZnO double-stacked active layer thin-film transistor application [J].
Jeong, Jun-Kyo ;
Yun, Ho-Jin ;
Yang, Seung-Dong ;
Eom, Ki-Yun ;
Chea, Seong-Won ;
Park, Jeong-Hyun ;
Lee, Hi-Deok ;
Lee, Ga-Won .
THIN SOLID FILMS, 2017, 638 :89-95
[48]   Simultaneously Defined Semiconducting Channel Layer Using Electrohydrodynamic Jet Printing of a Passivation Layer for Oxide Thin-Film Transistors [J].
Hong, Seonghwan ;
Na, Jae Won ;
Lee, I. Sak ;
Kim, Hyung Tae ;
Kang, Byung Ha ;
Chung, Jusung ;
Kim, Hyun Jae .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (35) :39705-39712
[49]   Highly Stable Atomic Layer Deposited Zinc Oxide Thin-Film Transistors Incorporating Triple O2 Annealing [J].
Ye, Zhi ;
Xu, Hua ;
Liu, Tengfei ;
Liu, Ni ;
Wang, Ying ;
Zhang, Ning ;
Liu, Yang .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2017, 64 (10) :4114-4122
[50]   High performance vanadyl phthalocyanine thin-film transistors based on fluorobenzene end-capped quaterthiophene as the inducing layer [J].
Pan, Feng ;
Tian, Hongkun ;
Qian, Xianrui ;
Huang, Lizhen ;
Geng, Yanhou ;
Yan, Donghang .
ORGANIC ELECTRONICS, 2011, 12 (08) :1358-1363