Unified Generalizations of Hardy-Type Inequalities Through the Nabla Framework on Time Scales

被引:0
作者
Rezk, Haytham M. [1 ]
Balogun, Oluwafemi Samson [2 ]
Bakr, Mahmoud E. [3 ]
机构
[1] Al Azhar Univ, Fac Sci, Dept Math, Nasr City 11884, Egypt
[2] Univ Eastern Finland, Dept Comp, Kuopio 70211, Finland
[3] King Saud Univ, Coll Sci, Dept Stat & Operat Res, POB 2455, Riyadh 11451, Saudi Arabia
关键词
Hardy's inequality; nabla H & ouml; lder's inequality; nabla Jensen's inequality; convexity; continuous and discrete calculus; time scales;
D O I
10.3390/axioms13100723
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This research investigates innovative extensions of Hardy-type inequalities through the use of nabla H & ouml;lder's and nabla Jensen's inequalities, combined with the nabla chain rule and the characteristics of convex and submultiplicative functions. We extend these inequalities within a cohesive framework that integrates elements of both continuous and discrete calculus. Furthermore, our study revisits specific integral inequalities from the existing literature, showcasing the wide-ranging relevance of our results.
引用
收藏
页数:16
相关论文
共 35 条
[1]  
Agarwal RP, 2014, Dynamic Inequalities on Time Scales
[2]  
Agarwal RP, 2016, Hardy Type Inequalities on Time Scales
[3]   Dynamic Hardy-type inequalities with non-conjugate parameters [J].
AlNemer, Ghada ;
Zakarya, M. ;
Abd El-Hamid, H. A. ;
Kenawy, M. R. ;
Rezk, H. M. .
ALEXANDRIA ENGINEERING JOURNAL, 2020, 59 (06) :4523-4532
[4]  
Anderson D, 2003, ADVANCES IN DYNAMIC EQUATIONS ON TIME SCALES, P47
[5]   MINKOWSKI AND BECKENBACH-DRESHER INEQUALITIES AND FUNCTIONALS ON TIME SCALES [J].
Bibi, Rabia ;
Bohner, Martin ;
Pecaric, Josip ;
Varosanec, Sanja .
JOURNAL OF MATHEMATICAL INEQUALITIES, 2013, 7 (03) :299-312
[6]  
Bohner M., 2016, Multivariable Dynamic Calculus on Time Scales, DOI DOI 10.1007/978-3-319-47620-9
[7]   On strengthened Hardy and Polya-Knopp's inequalities [J].
Cizmesija, A ;
Pecaric, J ;
Persson, LE .
JOURNAL OF APPROXIMATION THEORY, 2003, 125 (01) :74-84
[8]  
Dinu C, 2008, ANN UNIV CRAIOVA-MAT, V35, P87
[9]   Constantin's inequality for nabla and diamond-alpha derivative [J].
Guvenilir, Ayse Feza ;
Kaymakcalan, Billur ;
Pelen, Neslihan Nesliye .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
[10]  
HARDY G. H., 1928, Messenger of Mathematics, V57, P12