Invariance times transfer properties

被引:0
|
作者
Crepey, Stephane [1 ,2 ]
机构
[1] Sorbonne Univ, Lab Probabil Stat & Modelisat LPSM, Paris, France
[2] Univ Paris Cite, CNRS, UMR 8001, Paris, France
来源
PROBABILITY UNCERTAINTY AND QUANTITATIVE RISK | 2024年 / 9卷 / 04期
关键词
Progressive enlargement of filtration; Invariance time; Semimartingale calculus; Markov process; Backward stochastic differential equation; Counterparty risk; Credit risk; BSDES; RISK;
D O I
10.3934/puqr.2024019
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Invariance times are stopping times tau such that local martingales with respect to some reduced filtration and an equivalently changed probability measure, stopped before tau, are local martingales with respect to the original model filtration and probability measure. They arise naturally for modeling the default time of a dealer bank, in the mathematical finance context of counterparty credit risk. Assuming an invariance time endowed with an intensity and a positive Azema supermartingale, this work establishes a dictionary relating the semimartingale calculi in the original and reduced stochastic bases, regarding conditional expectations, martingales, stochastic integrals, random measure stochastic integrals, martingale representation properties, semimartingale characteristics, Markov properties, transition semigroups and infinitesimal generators, and solutions of backward stochastic differential equations.
引用
收藏
页码:431 / 452
页数:22
相关论文
共 50 条
  • [1] INVARIANCE TIMES
    Crepey, Stephane
    Song, Shiqi
    ANNALS OF PROBABILITY, 2017, 45 (6B): : 4632 - 4674
  • [2] Invariance properties of exact solutions of the radiative transfer equation
    Martelli, Fabrizio
    Tommasi, Federico
    Fini, Lorenzo
    Cortese, Lorenzo
    Sassaroli, Angelo
    Cavalieri, Stefano
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2021, 276
  • [3] Times of arrival and gauge invariance
    Das, Siddhant
    Noeth, Markus
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2021, 477 (2250):
  • [4] STRONG INVARIANCE FOR LOCAL-TIMES
    CSAKI, E
    REVESZ, P
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1983, 62 (02): : 263 - 278
  • [5] An invariance property of sojourn times in cyclic networks
    Malchin, C
    Daduna, H
    OPERATIONS RESEARCH LETTERS, 2005, 33 (01) : 1 - 8
  • [6] Characteristic relaxation times and their invariance to thermodynamic conditions
    Roland, C. M.
    SOFT MATTER, 2008, 4 (12) : 2316 - 2322
  • [7] Invariance Principles for Paced Record Times and Applications
    Gratiane Ennadifi
    Extremes, 1999, 2 (2) : 201 - 217
  • [8] Exceptional times and invariance for dynamical random walks
    Davar Khoshnevisan
    David A. Levin
    Pedro J. Méndez-Hernández
    Probability Theory and Related Fields, 2006, 134 : 383 - 416
  • [9] A note on the weak invariance principle for local times
    Kang, JS
    Wee, IS
    STATISTICS & PROBABILITY LETTERS, 1997, 32 (02) : 147 - 159