Long-term stability of ultra-high-performance concrete with steel fibers in various environments

被引:0
作者
Liao, Gaoyu [1 ,2 ]
Xu, Lixiang [1 ]
Wu, Linmei [1 ]
机构
[1] Hunan Inst Sci & Technol, Coll Civil Engn & Architecture, Yueyang 414006, Peoples R China
[2] Univ Western Australia, Sch Engn, Mat & Struct Innovat Grp, Perth, WA, Australia
关键词
long-term stability; UHPC; compressive strength; sustainable development; underwater engineering; DRYING SHRINKAGE; CARBONATION; STRENGTH; SHAPE; SIZE;
D O I
10.1680/jadcr.24.00094
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Ultra-high performance concrete (UHPC) is renowned for its exceptional strength, durability, and structural integrity, offering sustainable solutions for construction. However, concerns persist regarding its long-term performance under various environments due to unhydrated cementitious particles. This study investigates the effect of steel fiber content on the long-term stability of UHPC in tap water, outdoor, and seawater environments over 720 days. Results show that adding 1%similar to 3% steel fiber increases compressive strength by 4.5%similar to 11.5%, 9.5%similar to 18.5%, and 0.4%similar to 3.5%, respectively. Steel fibers effectively reduce length changes, decreasing the rate by 26.3%, 57.0%, and 26.3%, respectively. Microstructure analysis confirms the formation of calcite and brucite in seawater, indicating chemical interactions between seawater components and cement-based materials. After 720 days in seawater, surface fibers exhibited corrosion, but internal fibers remained intact. This study provides insights into UHPC's long-term stability in diverse environments, critical for infrastructure durability and safety.
引用
收藏
页数:32
相关论文
共 50 条
  • [21] Analysis of the flexural properties of ultra-high-performance concrete consisting of hybrid straight steel fibers
    Jiao, Chujie
    Ta, Jide
    Niu, Yanfei
    Meng, Shaoqiang
    Chen, Xue-Fei
    He, Songsong
    Ma, Ruonan
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2022, 17
  • [22] Influence of fibers on the mechanical properties and durability of ultra-high-performance concrete: A review
    Wen, Chengcheng
    Zhang, Peng
    Wang, Juan
    Hu, Shaowei
    JOURNAL OF BUILDING ENGINEERING, 2022, 52
  • [23] Corrosion effect on tensile behavior of ultra-high-performance concrete reinforced with straight steel fibers
    Yoo, Doo-Yeol
    Shin, Wonsik
    Chun, Booki
    CEMENT & CONCRETE COMPOSITES, 2020, 109
  • [24] A state of review on manufacturing and effectiveness of ultra-high-performance fiber reinforced concrete for long-term integrity of concrete structures
    Chen, Dongmei
    Chen, Yueshun
    Ma, Lu
    Sobuz, Md. Habibur Rahman
    Kabbo, Md. Kawsarul Islam
    Khan, Md. Munir Hayet
    ADVANCES IN CONCRETE CONSTRUCTION, 2024, 17 (05) : 293 - 310
  • [25] Ultra-High-Performance Concrete with Micro- to Nanoscale Reinforcement
    Alsalami, Zainab Hashim Abbas
    Abbas, Fatima Hashim
    ACI MATERIALS JOURNAL, 2024, 121 (02) : 73 - 92
  • [26] Reinforcing effect of surface-modified steel fibers in ultra-high-performance concrete under tension
    Chun, Booki
    Kim, Soonho
    Yoo, Doo-Yeol
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2022, 16
  • [27] Advanced Study of Columns Confined by Ultra-High-Performance Concrete and Ultra-High-Performance Fiber-Reinforced Concrete Confinements
    Susilorini, Rr. M. I. Retno
    Kusumawardaningsih, Yuliarti
    FIBERS, 2023, 11 (05)
  • [28] Cryogenic pullout behavior of steel fibers from ultra-high-performance concrete under impact loading
    Kim, Min-Jae
    Yoo, Doo-Yeol
    CONSTRUCTION AND BUILDING MATERIALS, 2020, 239
  • [29] Hybrid effect of macro and micro steel fibers on the pullout and tensile behaviors of ultra-high-performance concrete
    Chun, Booki
    Yoo, Doo-Yeol
    COMPOSITES PART B-ENGINEERING, 2019, 162 : 344 - 360
  • [30] Effects of fiber shape and distance on the pullout behavior of steel fibers embedded in ultra-high-performance concrete
    Kim, Jae-Jin
    Yoo, Doo-Yeol
    CEMENT & CONCRETE COMPOSITES, 2019, 103 : 213 - 223