Artificial intelligence: clinical applications and future advancement in gastrointestinal cancers

被引:2
作者
Akbari, Abolfazl [1 ]
Adabi, Maryam [2 ]
Masoodi, Mohsen [1 ]
Namazi, Abolfazl [1 ,3 ]
Mansouri, Fatemeh [4 ]
Tabaeian, Seidamir Pasha [1 ,3 ]
Eshkiki, Zahra Shokati [5 ]
机构
[1] Iran Univ Med Sci, Colorectal Res Ctr, Tehran, Iran
[2] Ahvaz Jundishapur Univ Med Sci, Infect Ophthalmol Res Ctr, Ahvaz, Iran
[3] Iran Univ Med Sci, Sch Med, Dept Internal Med, Tehran, Iran
[4] Islamic Azad Univ, Qom Branch, Fac Sci, Dept Microbiol, Qom, Iran
[5] Ahvaz Jundishapur Univ Med Sci, Imam Khomeini Hosp, Clin Sci Res Inst, Alimentary Tract Res Ctr, Ahvaz, Iran
来源
FRONTIERS IN ARTIFICIAL INTELLIGENCE | 2024年 / 7卷
关键词
artificial intelligence; gastrointestinal cancers; machine learning; deep learning; early detection; diagnosis; treatment response; survival prediction; PANCREATIC-CANCER; NEOADJUVANT CHEMORADIOTHERAPY; DIFFERENTIAL-DIAGNOSIS; COMPUTED-TOMOGRAPHY; PREDICTION; RADIOMICS; MACHINE; EUS; CHEMOTHERAPY; PROGNOSIS;
D O I
10.3389/frai.2024.1446693
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
One of the foremost causes of global healthcare burden is cancer of the gastrointestinal tract. The medical records, lab results, radiographs, endoscopic images, tissue samples, and medical histories of patients with gastrointestinal malignancies provide an enormous amount of medical data. There are encouraging signs that the advent of artificial intelligence could enhance the treatment of gastrointestinal issues with this data. Deep learning algorithms can swiftly and effectively analyze unstructured, high-dimensional data, including texts, images, and waveforms, while advanced machine learning approaches could reveal new insights into disease risk factors and phenotypes. In summary, artificial intelligence has the potential to revolutionize various features of gastrointestinal cancer care, such as early detection, diagnosis, therapy, and prognosis. This paper highlights some of the many potential applications of artificial intelligence in this domain. Additionally, we discuss the present state of the discipline and its potential future developments.
引用
收藏
页数:21
相关论文
共 190 条
[1]   Machine learning-based colorectal cancer prediction using global dietary data [J].
Abdul Rahman, Hanif ;
Ottom, Mohammad Ashraf ;
Dinov, Ivo D. .
BMC CANCER, 2023, 23 (01)
[2]   Healthcare utilization and total costs of care among patients with advanced metastatic gastric and esophageal cancer [J].
Abraham, Pranav ;
Wang, Liya ;
Jiang, Zhengzheng ;
Gricar, Joseph ;
Tan, Hiangkiat ;
Kelly, Ronan J. .
FUTURE ONCOLOGY, 2021, 17 (03) :291-299
[3]   Machine learning in clinical decision making [J].
Adlung, Lorenz ;
Cohen, Yotam ;
Mor, Uria ;
Elinav, Eran .
MED, 2021, 2 (06) :642-665
[4]   Establishing machine learning models to predict the early risk of gastric cancer based on lifestyle factors [J].
Afrash, Mohammad Reza ;
Shafiee, Mohsen ;
Kazemi-Arpanahi, Hadi .
BMC GASTROENTEROLOGY, 2023, 23 (01)
[5]  
Ahn J. C, 2024, Artificial intelligence in clinical practice, P443
[6]   Deep learning in hepatocellular carcinoma: Current status and future perspectives [J].
Ahn, Joseph C. ;
Qureshi, Touseef Ahmad ;
Singal, Amit G. ;
Li, Debiao ;
Yang, Ju-Dong .
WORLD JOURNAL OF HEPATOLOGY, 2021, 13 (12) :2039-2051
[7]   Deep Learning Improves Pancreatic Cancer Diagnosis Using RNA-Based Variants [J].
Al-Fatlawi, Ali ;
Malekian, Negin ;
Garcia, Sebastian ;
Henschel, Andreas ;
Kim, Ilwook ;
Dahl, Andreas ;
Jahnke, Beatrix ;
Bailey, Peter ;
Bolz, Sarah Naomi ;
Poetsch, Anna R. ;
Mahler, Sandra ;
Gruetzmann, Robert ;
Pilarsky, Christian ;
Schroeder, Michael .
CANCERS, 2021, 13 (11)
[8]   Predicting Colorectal Cancer Using Machine and Deep Learning Algorithms: Challenges and Opportunities [J].
Alboaneen, Dabiah ;
Alqarni, Razan ;
Alqahtani, Sheikah ;
Alrashidi, Maha ;
Alhuda, Rawan ;
Alyahyan, Eyman ;
Alshammari, Turki .
BIG DATA AND COGNITIVE COMPUTING, 2023, 7 (02)
[9]   Machine Learning and Deep Learning Applications in Multiple Myeloma Diagnosis, Prognosis, and Treatment Selection [J].
Allegra, Alessandro ;
Tonacci, Alessandro ;
Sciaccotta, Raffaele ;
Genovese, Sara ;
Musolino, Caterina ;
Pioggia, Giovanni ;
Gangemi, Sebastiano .
CANCERS, 2022, 14 (03)
[10]   Global surveillance of trends in cancer survival 2000-14 (CONCORD-3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries [J].
Allemani, Claudia ;
Matsuda, Tomohiro ;
Di Carlo, Veronica ;
Harewood, Rhea ;
Matz, Melissa ;
Niksic, Maja ;
Bonaventure, Audrey ;
Valkov, Mikhail ;
Johnson, Christopher J. ;
Esteve, Jacques ;
Ogunbiyi, Olufemi J. ;
Azevedo e Silva, Gulnar ;
Chen, Wan-Qing ;
Eser, Sultan ;
Engholm, Gerda ;
Stiller, Charles A. ;
Monnereau, Alain ;
Woods, Ryan R. ;
Visser, Otto ;
Lim, Gek Hsiang ;
Aitken, Joanne ;
Weir, Hannah K. ;
Coleman, Michel P. .
LANCET, 2018, 391 (10125) :1023-1075