Hierarchical Reinforcement Learning for Quadrupedal Robots: Efficient Object Manipulation in Constrained Environments

被引:0
作者
Azimi, David [1 ]
Hoseinnezhad, Reza [2 ]
机构
[1] Deakin Univ, Sch Informat Technol, Burwood, Vic 3125, Australia
[2] RMIT Univ, Sch Engn, Melbourne, Vic 3082, Australia
关键词
reinforcement learning; robotic manipulation; quadrupedal robots;
D O I
10.3390/s25051565
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
This study introduces a hierarchical reinforcement learning (RL) framework tailored to object manipulation tasks by quadrupedal robots, emphasizing their real-world deployment. The proposed approach adopts a sensor-driven control structure capable of addressing challenges in dense and cluttered environments filled with walls and obstacles. A novel reward function is central to the method, incorporating sensor-based obstacle observations to optimize the decision-making. This design minimizes the computational demands while maintaining adaptability and robust functionality. Simulated trials conducted in NVIDIA Isaac Sim, utilizing ANYbotics quadrupedal robots, demonstrated a high manipulation accuracy, with a mean positioning error of 11 cm across object-target distances of up to 10 m. Furthermore, the RL framework effectively integrates path planning in complex environments, achieving energy-efficient and stable operations. These findings establish the framework as a promising approach for advanced robotics requiring versatility, efficiency, and practical deployability.
引用
收藏
页数:14
相关论文
共 26 条
[1]   Learning dexterous in-hand manipulation [J].
Andrychowicz, Marcin ;
Baker, Bowen ;
Chociej, Maciek ;
Jozefowicz, Rafal ;
McGrew, Bob ;
Pachocki, Jakub ;
Petron, Arthur ;
Plappert, Matthias ;
Powell, Glenn ;
Ray, Alex ;
Schneider, Jonas ;
Sidor, Szymon ;
Tobin, Josh ;
Welinder, Peter ;
Weng, Lilian ;
Zaremba, Wojciech .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2020, 39 (01) :3-20
[2]  
Arm P., 2024, P 41 IEEE C ROB AUT
[3]   Legs as Manipulator: Pushing Quadrupedal Agility Beyond Locomotion [J].
Cheng, Xuxin ;
Kumar, Ashish ;
Pathak, Deepak .
2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA, 2023, :5106-5112
[4]   Distributed Cooperative LQR Design for Multi-Input Linear Systems [J].
Duan, Peihu ;
He, Lidong ;
Duan, Zhisheng ;
Shi, Ling .
IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2023, 10 (02) :680-692
[5]   ANYmal parkour: Learning agile navigation for quadrupedal robots [J].
Hoeller, David ;
Rudin, Nikita ;
Sako, Dhionis ;
Hutter, Marco .
SCIENCE ROBOTICS, 2024, 9 (88)
[6]  
Hu YT, 2024, Arxiv, DOI arXiv:2403.14300
[7]   HiLMa-Res: A General Hierarchical Framework via Residual RL for Combining Quadrupedal Locomotion and Manipulation [J].
Huang, Xiaoyu ;
Liu, Qiayuan ;
Liu, Yiming ;
Li, Zhongyu ;
Smith, Laura ;
Levine, Sergey ;
Peng, Xue Bin ;
Sreenath, Koushil .
2024 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2024), 2024, :9050-9057
[8]   Learning Whole-Body Manipulation for Quadrupedal Robot [J].
Jeon, Seunghun ;
Jung, Moonkyu ;
Choi, Suyoung ;
Kim, Beomjoon ;
Hwangbo, Jemin .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (01) :699-706
[9]   DribbleBot: Dynamic Legged Manipulation in the Wild [J].
Ji, Yandong ;
Margolis, Gabriel B. ;
Agrawal, Pulkit .
2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA, 2023, :5155-5162
[10]   Hierarchical Reinforcement Learning for Precise Soccer Shooting Skills using a Quadrupedal Robot [J].
Ji, Yandong ;
Li, Zhongyu ;
Sun, Yinan ;
Peng, Xue Bin ;
Levine, Sergey ;
Berseth, Glen ;
Sreenath, Koushil .
2022 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2022, :1479-1486