0.4 THz Broadband Terahertz Noise Source Based on Photoconductive Antennas

被引:0
|
作者
Chen, Yinwei [1 ]
Qin, Feifei [1 ,2 ,3 ]
Liu, Lijuan [1 ]
Zhao, Zeyu [1 ]
Li, Pu [1 ,2 ,3 ]
Sun, Yuehui [1 ,2 ,3 ]
Liu, Wenjie [1 ,2 ,3 ]
Wang, Yuncai [1 ,2 ,3 ]
机构
[1] Guangdong Univ Technol, Inst Adv Photon Technol, Sch Informat Engn, Guangzhou 510006, Peoples R China
[2] Guangdong Univ Technol, Key Lab Photon Technol Integrated Sensing & Commun, Minist Educ China, Guangzhou 510006, Peoples R China
[3] Guangdong Univ Technol, Guangdong Prov Key Lab Informat Photon Technol, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
noise source; terahertz-wave noise; photoconductive antenna; STABILITY; HOT;
D O I
10.3390/photonics12030252
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Terahertz noise sources have important application prospects in noise figure measurements. In this paper, a 0.4 THz broadband terahertz noise source based on a photoconductive antenna is proposed. As a demonstration of feasibility, this terahertz noise source is generated by mixing three beams of Gaussian-shaped incoherent light. The resulting excess noise ratio (ENR) across different frequency bands is as follows: 20.9 dB, with a flatness of +/- 7.9 dB in the 75 similar to 110 GHz range; 19.3 dB, with a flatness of +/- 6.2 dB in the 110 similar to 170 GHz range; 20.6 dB, with a flatness of +/- 4.8 dB in the 170 similar to 260 GHz range; and 18.7 dB, with a flatness of +/- 4.3 dB in the 260 similar to 400 GHz range. These results demonstrate that the terahertz noise source based on photoconductive antennas that we proposed shows great potential in high-frequency bands and noise figure measurements.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Dipole photoconductive antennas for broadband terahertz receiver
    Pan Y.
    Zheng Z.
    Ding Q.
    Yao Y.
    Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2019, 48 (01):
  • [2] Metamaterials-Based Terahertz Photoconductive Antennas
    Gu J.
    Wang K.
    Xu Y.
    Ouyang C.
    Tian Z.
    Han J.
    Zhang W.
    Zhongguo Jiguang/Chinese Journal of Lasers, 2021, 48 (19):
  • [3] Metamaterials-Based Terahertz Photoconductive Antennas
    Gu Jianqiang
    Wang Kemeng
    Xu Yi
    Ouyang Chunmei
    Tian Zhen
    Han Jiaguang
    Zhang Weili
    CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG, 2021, 48 (19):
  • [4] Quantum Dot-Based Terahertz Photoconductive Antennas
    Gorodetsky, Andrei
    Rafailov, Edik U.
    Leyman, Ross
    2014 INTERNATIONAL CONFERENCE LASER OPTICS, 2014,
  • [5] Photoconductive dipole antennas for efficient terahertz receiver
    Truong Khang Nguyen
    Kim, Won Tae
    Kang, Bong Joo
    Bark, Hyeon Sang
    Kim, Kangho
    Lee, Jaejin
    Park, Ikmo
    Jeon, Tae-In
    Rotermund, Fabian
    OPTICS COMMUNICATIONS, 2017, 383 : 50 - 56
  • [6] Carrier dynamics and terahertz radiation in photoconductive antennas
    Piao, ZS
    Tani, M
    Sakai, K
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 2000, 39 (01): : 96 - 100
  • [7] Numerical Simulation of Terahertz Generation and Detection Based on Ultrafast Photoconductive Antennas
    Chen Long-chao
    Fan Wen-hui
    INTERNATIONAL SYMPOSIUM ON PHOTOELECTRONIC DETECTION AND IMAGING 2011: TERAHERTZ WAVE TECHNOLOGIES AND APPLICATIONS, 2011, 8195
  • [8] Noise Analysis of Photoconductive Terahertz Detectors
    Wang, Ning
    Jarrahi, Mona
    JOURNAL OF INFRARED MILLIMETER AND TERAHERTZ WAVES, 2013, 34 (09) : 519 - 528
  • [9] Noise Analysis of Photoconductive Terahertz Detectors
    Ning Wang
    Mona Jarrahi
    Journal of Infrared, Millimeter, and Terahertz Waves, 2013, 34 : 519 - 528
  • [10] Multi-channel detection of ultrashort THz-pulses based on photoconductive antennas
    Freese, Wiebke
    Pradarutti, Boris
    Riehemann, Stefan
    Eckstein, Hans-Christoph
    Notni, Gunther
    Nolte, Stefan
    Tuennermann, Andreas
    TERAHERTZ TECHNOLOGY AND APPLICATIONS II, 2009, 7215