Templated Freeze-Casting for Porous Organic Battery Electrodes with High-Rate Capabilities

被引:0
作者
Vaidyula, Rinish Reddy [1 ]
Kawashima, Kenta [1 ]
Brotherton, Zachary W. [2 ]
Fuller III, Robert Ferguson [1 ]
Wang, Ziqing [1 ]
Ellison, Christopher J. [3 ]
Lynd, Nathaniel A. [1 ,2 ]
Mullins, C. Buddie [1 ,2 ,4 ,5 ]
机构
[1] Univ Texas Austin, Dept Chem, Austin, TX 78712 USA
[2] Univ Texas Austin, Jhon J McKetta Dept Chem Engn, Austin, TX 78712 USA
[3] Univ Minnesota, Dept Chem Engn & Mat Sci, Minneapolis, MN 55455 USA
[4] Univ Texas Austin, Texas Mat Inst, Austin, TX 78712 USA
[5] Univ Texas Austin, Allen J Bard Ctr Electrochem, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
electrode casting; high-rate capabilities; organic batteries; porous electrodes; redox active polymers; CATHODE MATERIALS; ION; STORAGE; POLY(N-VINYLCARBAZOLE); PERFORMANCE; CHALLENGES; THICKNESS; POLYMERS;
D O I
10.1002/adfm.202422459
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Redox-active polymer (RAP)-based organic electrodes offer versatile energy storage solutions across various battery systems. However, effective dispersion of polymer active materials with conductive additives remains challenging, limiting active site accessibility and material utilization. This study introduces camphene (CAMP), a bio-derived solvent, to fabricate porous organic electrodes through templated freeze casting. Compared to conventional N-methyl-2-pyrrolidone (NMP)-cast electrodes, CAMP-cast electrodes exhibit superior ion diffusion, lower charge transfer resistance, and enhanced reaction kinetics across three different RAPs. This results in excellent rate capabilities and significant capacity retention even at 20 A g(-1) current density. At higher mass loadings (>1.0 mg cm(-)(2)), CAMP-cast electrodes achieve areal capacities of approximate to 0.15 mAh cm(-)(2) at 0.5 A g(-1) over 1000 cycles and maintain more than 80% capacity retention after 500 cycles at 2 A g(-1). These findings demonstrate CAMP's potential as an eco-friendly alternative to NMP for producing high-performance organic electrodes, offering a sustainable approach to advanced energy storage solutions.
引用
收藏
页数:10
相关论文
共 54 条
  • [1] Etacheri V., Marom R., Elazari R., Salitra G., Aurbach D., Energy Environ. Sci., 4, (2011)
  • [2] Goodenough J.B., Kim Y., Chem. Mater., 22, (2010)
  • [3] Ms W., Chem. Rev., 104, (2004)
  • [4] Stephan A.K., Joule, 4, (2020)
  • [5] Kye H., Kang Y., Jang D., Kwon J.E., Kim B.-G., Adv. Energy. Sustainability. Res., 3, (2022)
  • [6] Wu J., Zhang S., Gu Q., Zhang Q., FlexMat, 1, (2024)
  • [7] Larcher D., Tarascon J.-M., Nature Chem., 7, (2015)
  • [8] Tang W., He H., Shi J., Cao B., Yang C., Fan C., Org. Electron., 75, (2019)
  • [9] Kim J., Ling J., Lai Y., Milner P.J., ACS Mater. Au, 4, (2024)
  • [10] Yin M., Zhou X., Xue Z., Macromol. Chem. Phys., 225, (2024)