C1,α-Regularity for p-Harmonic Functions in SU(3)

被引:0
作者
Yu, Chengwei [1 ]
机构
[1] China Fire & Rescue Inst, Dept Basic, Beijing 102202, Peoples R China
来源
JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS | 2024年 / 37卷 / 04期
基金
中国国家自然科学基金;
关键词
p-Laplacian equation; C-1; C-alpha-regularity; SU(3); Caccioppoli inequality; De Giorgi; p-harmonic function; REGULARITY;
D O I
10.4208/jpde.v37.n4.5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This artical concerns the C-loc(1,alpha)-regularity of weak solutions u to the degenerate subelliptic p-Laplacian equation Delta(H,p)u(x) = Sigma(6)(i=1) X-i*(|del(H)u|(p-2) X(i)u) = 0, where H is the orthogonal complement of a Cartan subalgebra in SU(3) with the orthonormal basis composed of the vector fields X-1, ... , X-6 . When 1 < p < 2, we prove that del(H)u is an element of C-loc(alpha).
引用
收藏
页码:427 / 466
页数:40
相关论文
共 50 条
[31]   On the Lipschitz character of orthotropic p-harmonic functions [J].
Bousquet, P. ;
Brasco, L. ;
Leone, C. ;
Verde, A. .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (03)
[32]   HOLDER CONTINUITY OF DEGENERATE p-HARMONIC FUNCTIONS [J].
Giannetti, Flavia ;
di Napoli, Antonia Passarelli .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2014, 39 (02) :567-577
[33]   The method of p-harmonic approximation and optimal interior partial regularity for energy minimizing p-harmonic maps under the controllable growth condition [J].
Shuhong CHEN Zhong TAN School of Mathematical Science Xiamen University Xiamen China .
Science in China(Series A:Mathematics), 2007, (01) :105-115
[34]   The method of p-harmonic approximation and optimal interior partial regularity for energy minimizing p-harmonic maps under the controllable growth condition [J].
Shu-hong Chen ;
Zhong Tan .
Science in China Series A: Mathematics, 2007, 50 :105-115
[35]   The method of p-harmonic approximation and optimal interior partial regularity for energy minimizing p-harmonic maps under the controllable growth condition [J].
Chen, Shu-hong ;
Tan, Zhong .
SCIENCE IN CHINA SERIES A-MATHEMATICS, 2007, 50 (01) :105-115
[36]   Classification of metric measure spaces and their ends using p-harmonic functions [J].
Bjorn, Anders ;
Bjorn, Jana ;
Shanmugalingam, Nageswari .
ANNALES FENNICI MATHEMATICI, 2022, 47 (02) :1025-1052
[37]   Boundary behavior of p-harmonic functions in the Heisenberg group [J].
Garofalo, Nicola ;
Nguyen Cong Phuc .
MATHEMATISCHE ANNALEN, 2011, 351 (03) :587-632
[38]   TENSOR PRODUCTS AND SUMS OF p-HARMONIC FUNCTIONS, QUASIMINIMIZERS AND p-ADMISSIBLE WEIGHTS [J].
Bjorn, Anders ;
Bjorn, Jana .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (12) :5195-5203
[39]   C1,α regularity for the normalized p-Poisson problem [J].
Attouchi, Amal ;
Parviainen, Mikko ;
Ruosteenoja, Eero .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2017, 108 (04) :553-591
[40]   The Dirichlet problem for p-harmonic functions with respect to arbitrary compactifications [J].
Bjorn, Anders ;
Bjorn, Jana ;
Sjodin, Tomas .
REVISTA MATEMATICA IBEROAMERICANA, 2018, 34 (03) :1323-1360