C1,α-Regularity for p-Harmonic Functions in SU(3)

被引:0
作者
Yu, Chengwei [1 ]
机构
[1] China Fire & Rescue Inst, Dept Basic, Beijing 102202, Peoples R China
来源
JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS | 2024年 / 37卷 / 04期
基金
中国国家自然科学基金;
关键词
p-Laplacian equation; C-1; C-alpha-regularity; SU(3); Caccioppoli inequality; De Giorgi; p-harmonic function; REGULARITY;
D O I
10.4208/jpde.v37.n4.5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This artical concerns the C-loc(1,alpha)-regularity of weak solutions u to the degenerate subelliptic p-Laplacian equation Delta(H,p)u(x) = Sigma(6)(i=1) X-i*(|del(H)u|(p-2) X(i)u) = 0, where H is the orthogonal complement of a Cartan subalgebra in SU(3) with the orthonormal basis composed of the vector fields X-1, ... , X-6 . When 1 < p < 2, we prove that del(H)u is an element of C-loc(alpha).
引用
收藏
页码:427 / 466
页数:40
相关论文
共 50 条
[21]   Linear relations for p-harmonic functions [J].
Kurata, Hisayasu .
DISCRETE APPLIED MATHEMATICS, 2008, 156 (01) :103-109
[22]   Regularity and free boundary regularity for the p laplacian in Lipschitz and c1 domains [J].
Lewis, John L. ;
Nystroem, Kaj .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2008, 33 (02) :523-548
[23]   Differentiability of p-Harmonic Functions on Metric Measure Spaces [J].
Gong, Jasun ;
Hajlasz, Piotr .
POTENTIAL ANALYSIS, 2013, 38 (01) :79-93
[24]   MAXIMUM PRINCIPLE AND COMPARISON PRINCIPLE OF p-HARMONIC FUNCTIONS VIA p-HARMONIC BOUNDARY OF GRAPHS [J].
Lee, Yong Hah .
BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2012, 49 (06) :1241-1250
[25]   VANISHING p-CAPACITY OF SINGULAR SETS FOR p-HARMONIC FUNCTIONS [J].
Sato, Tomohiko ;
Suzuki, Takashi ;
Takahashi, Futoshi .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2011,
[26]   Boundary Regularity for p-Harmonic Functions and Solutions of Obstacle Problems on Unbounded Sets in Metric Spaces [J].
Bjorn, Anders ;
Hansevi, Daniel .
ANALYSIS AND GEOMETRY IN METRIC SPACES, 2019, 7 (01) :179-196
[27]   The Kellogg property and boundary regularity for p-harmonic functions with respect to the Mazurkiewicz boundary and other compactifications [J].
Bjorn, Anders .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2019, 64 (01) :40-63
[28]   The Liouville theorem for p-harmonic functions and quasiminimizers with finite energy [J].
Bjorn, Anders ;
Bjorn, Jana ;
Shanmugalingam, Nageswari .
MATHEMATISCHE ZEITSCHRIFT, 2021, 297 (1-2) :827-854
[29]   C1,α-subelliptic regularity on SU(3) and compact, semi-simple Lie groups [J].
Domokos, Andras ;
Manfredi, Juan J. .
ANALYSIS AND MATHEMATICAL PHYSICS, 2020, 10 (01)
[30]   Description of p-harmonic functions on the Cayley tree [J].
Rozikov, U. A. ;
Ishankulov, F. T. .
THEORETICAL AND MATHEMATICAL PHYSICS, 2010, 162 (02) :222-229