ON NONINNER AUTOMORPHISMS OF SOME FINITE P-GROUPS

被引:0
|
作者
Singh, Sandeep [1 ]
Garg, Rohit [2 ,3 ]
Kalra, Hemant [4 ]
机构
[1] Akal Univ, Dept Math, Talwandi Sabo 151302, Punjab, India
[2] Govt Ripudaman Coll, Dept Math, Nabha 147201, Punjab, India
[3] HBNI, Natl Inst Sci Educ & Res, Sch Math Sci, PO Jatni, Khurja 752050, Odisha, India
[4] Guru Jambheshwar Univ Sci & Technol, Dept Math, Hisar 125001, Haryana, India
关键词
finite p-group; noninner automorphism; ORDER-P;
D O I
10.1017/S0004972724000637
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We settle the noninner automorphism conjecture for finite p-groups ( p> 2$ ) with certain conditions. Also, we give an elementary and short proof of the main result of Ghoraishi ['On noninner automorphisms of finite nonabelian p-groups', Bull. Aust. Math. Soc. 89(2) (2014) 202-209].
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Finite p-groups with automorphism of a special form
    Antonov V.A.
    Chekanov S.G.
    Algebra and Logic, 2006, 45 (4) : 213 - 219
  • [32] On the order of nilpotent multipliers of finite p-groups
    Mashayekhy, B
    Sanati, MA
    COMMUNICATIONS IN ALGEBRA, 2005, 33 (07) : 2079 - 2087
  • [33] FINITE p-GROUPS AND CENTRALIZERS OF NONCENTRAL ELEMENTS
    Li, Xianhua
    Zhang, Junqiang
    COMMUNICATIONS IN ALGEBRA, 2013, 41 (09) : 3267 - 3276
  • [34] Existence of normal subgroups in finite p-groups
    Glauberman, George
    JOURNAL OF ALGEBRA, 2008, 319 (02) : 800 - 805
  • [35] ON FINITE p-GROUPS WITH ABELIAN AUTOMORPHISM GROUP
    Jain, Vivek K.
    Rai, Pradeep K.
    Yadav, Manoj K.
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2013, 23 (05) : 1063 - 1077
  • [36] MAXIMAL SUBSETS OF PAIRWISE NON-COMMUTING ELEMENTS OF SOME FINITE p-GROUPS
    Azad, A.
    Fouladi, S.
    Orfi, R.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2013, 39 (01): : 187 - 192
  • [37] Some finite p-groups with central automorphism group of non-minimal order
    Sharma, Mahak
    Kalra, Hemant
    Gumber, Deepak
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2018, 17 (02)
  • [38] Finite 2-generator equilibrated p-groups
    Zhang, Qin-Hai
    Sun, Cui-Juan
    Qu, Hai-Peng
    Xu, Ming-Yao
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2007, 50 (06): : 814 - 820
  • [39] Finite 2-generator equilibrated p-groups
    Qin-hai ZHANG
    ScienceinChina(SeriesA:Mathematics), 2007, (06) : 814 - 820
  • [40] A class of finite p-groups and the normalized unit groups of group algebras
    Wang, Yulei
    Liu, Heguo
    COMMUNICATIONS IN ALGEBRA, 2024, 52 (10) : 4272 - 4294