共 44 条
A point-interval wind speed prediction model based on entropy clustering and hybrid optimization weighted strategy
被引:3
作者:

Wang, Jujie
论文数: 0 引用数: 0
h-index: 0
机构:
Nanjing Univ Informat Sci & Technol, Sch Management Sci & Engn, Nanjing 210044, Peoples R China Nanjing Univ Informat Sci & Technol, Sch Management Sci & Engn, Nanjing 210044, Peoples R China

Shu, Shuqin
论文数: 0 引用数: 0
h-index: 0
机构:
Nanjing Univ Informat Sci & Technol, Sch Management Sci & Engn, Nanjing 210044, Peoples R China Nanjing Univ Informat Sci & Technol, Sch Management Sci & Engn, Nanjing 210044, Peoples R China

Xu, Shulian
论文数: 0 引用数: 0
h-index: 0
机构:
Nanjing Univ Informat Sci & Technol, Sch Management Sci & Engn, Nanjing 210044, Peoples R China Nanjing Univ Informat Sci & Technol, Sch Management Sci & Engn, Nanjing 210044, Peoples R China
机构:
[1] Nanjing Univ Informat Sci & Technol, Sch Management Sci & Engn, Nanjing 210044, Peoples R China
来源:
关键词:
Wind speed prediction;
Decomposition and integration method;
Hybrid optimization weighted strategy;
Interval prediction;
RECURRENT UNIT NETWORK;
ALGORITHM;
DECOMPOSITION;
REGRESSION;
MULTISTEP;
D O I:
10.1016/j.renene.2025.122653
中图分类号:
X [环境科学、安全科学];
学科分类号:
08 ;
0830 ;
摘要:
Wind speed prediction is crucial for effective energy management, power dispatching, and optimizing wind energy conversion systems. However, its inherent randomness and instability pose significant challenges. This paper introduces a wind speed prediction method that enhances accuracy through entropy clustering and a hybrid optimization weighted strategy. Firstly, the training set is decomposed and reconstituted into multiple feature subsequences by the improved complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN). Secondly, the internal relationship between the training set and these subsequences is constructed through the gated recurrent unit (GRU). To prevent information leakage, this relationship is mapped to the testing set. Based on the characteristics of each subsequence, the optimal prediction model is selected. Finally, chaos game optimization (CGO) is used to weighted integrate the prediction results of each model to obtain the final point and interval prediction results. The proposed method is evaluated using data from six Chinese wind farms located in diverse geographical areas. Compared with other models, the mean squared error (MSE) of the proposed method on the six datasets is 0.882 m/s, 0.507 m/s, 0.174 m/s, 0.197 m/s, 0.362 m/s and 0.322 m/s, respectively. This fully proves its effectiveness and broad application prospects.
引用
收藏
页数:31
相关论文
共 44 条
[1]
Completion of wind turbine data sets for wind integration studies applying random forests and k-nearest neighbors
[J].
Becker, Raik
;
Thraen, Daniela
.
APPLIED ENERGY,
2017, 208
:252-262

Becker, Raik
论文数: 0 引用数: 0
h-index: 0
机构:
Helmholtz Ctr Environm Res GmbH UFZ, Dept Bioenergy, Permoserstr 15, D-04318 Leipzig, Germany Helmholtz Ctr Environm Res GmbH UFZ, Dept Bioenergy, Permoserstr 15, D-04318 Leipzig, Germany

Thraen, Daniela
论文数: 0 引用数: 0
h-index: 0
机构:
Helmholtz Ctr Environm Res GmbH UFZ, Dept Bioenergy, Permoserstr 15, D-04318 Leipzig, Germany
DBFZ Deutsch Biomasseforschungszentrum gGmbH, Bioenergy Syst Dept, Torgauer Str 116, D-04347 Leipzig, Germany Helmholtz Ctr Environm Res GmbH UFZ, Dept Bioenergy, Permoserstr 15, D-04318 Leipzig, Germany
[2]
Gaussian Process Regression for numerical wind speed prediction enhancement
[J].
Cai, Haoshu
;
Jia, Xiaodong
;
Feng, Jianshe
;
Li, Wenzhe
;
Hsu, Yuan-Ming
;
Lee, Jay
.
RENEWABLE ENERGY,
2020, 146
:2112-2123

Cai, Haoshu
论文数: 0 引用数: 0
h-index: 0
机构:
Univ Cincinnati, Dept Mech Engn, 3NSF I UCR Ctr Intelligent Maintenance Syst, POB 210072, Cincinnati, OH 45221 USA Univ Cincinnati, Dept Mech Engn, 3NSF I UCR Ctr Intelligent Maintenance Syst, POB 210072, Cincinnati, OH 45221 USA

Jia, Xiaodong
论文数: 0 引用数: 0
h-index: 0
机构:
Univ Cincinnati, Dept Mech Engn, 3NSF I UCR Ctr Intelligent Maintenance Syst, POB 210072, Cincinnati, OH 45221 USA Univ Cincinnati, Dept Mech Engn, 3NSF I UCR Ctr Intelligent Maintenance Syst, POB 210072, Cincinnati, OH 45221 USA

Feng, Jianshe
论文数: 0 引用数: 0
h-index: 0
机构:
Univ Cincinnati, Dept Mech Engn, 3NSF I UCR Ctr Intelligent Maintenance Syst, POB 210072, Cincinnati, OH 45221 USA Univ Cincinnati, Dept Mech Engn, 3NSF I UCR Ctr Intelligent Maintenance Syst, POB 210072, Cincinnati, OH 45221 USA

Li, Wenzhe
论文数: 0 引用数: 0
h-index: 0
机构:
Univ Cincinnati, Dept Mech Engn, 3NSF I UCR Ctr Intelligent Maintenance Syst, POB 210072, Cincinnati, OH 45221 USA Univ Cincinnati, Dept Mech Engn, 3NSF I UCR Ctr Intelligent Maintenance Syst, POB 210072, Cincinnati, OH 45221 USA

Hsu, Yuan-Ming
论文数: 0 引用数: 0
h-index: 0
机构:
Univ Cincinnati, Dept Mech Engn, 3NSF I UCR Ctr Intelligent Maintenance Syst, POB 210072, Cincinnati, OH 45221 USA Univ Cincinnati, Dept Mech Engn, 3NSF I UCR Ctr Intelligent Maintenance Syst, POB 210072, Cincinnati, OH 45221 USA

Lee, Jay
论文数: 0 引用数: 0
h-index: 0
机构:
Univ Cincinnati, Dept Mech Engn, 3NSF I UCR Ctr Intelligent Maintenance Syst, POB 210072, Cincinnati, OH 45221 USA Univ Cincinnati, Dept Mech Engn, 3NSF I UCR Ctr Intelligent Maintenance Syst, POB 210072, Cincinnati, OH 45221 USA
[3]
A new simulation algorithm of multivariate short-term stochastic wind velocity field based on inverse fast Fourier transform
[J].
Chen, Ning
;
Li, Yongle
;
Xiang, Huoyue
.
ENGINEERING STRUCTURES,
2014, 80
:251-259

Chen, Ning
论文数: 0 引用数: 0
h-index: 0
机构:
Southwest Jiaotong Univ, Dept Bridge Engn, Chengdu 610031, Sichuan, Peoples R China Southwest Jiaotong Univ, Dept Bridge Engn, Chengdu 610031, Sichuan, Peoples R China

Li, Yongle
论文数: 0 引用数: 0
h-index: 0
机构:
Southwest Jiaotong Univ, Dept Bridge Engn, Chengdu 610031, Sichuan, Peoples R China Southwest Jiaotong Univ, Dept Bridge Engn, Chengdu 610031, Sichuan, Peoples R China

Xiang, Huoyue
论文数: 0 引用数: 0
h-index: 0
机构:
Southwest Jiaotong Univ, Dept Bridge Engn, Chengdu 610031, Sichuan, Peoples R China Southwest Jiaotong Univ, Dept Bridge Engn, Chengdu 610031, Sichuan, Peoples R China
[4]
2-D regional short-term wind speed forecast based on CNN-LSTM deep learning model
[J].
Chen, Yaoran
;
Wang, Yan
;
Dong, Zhikun
;
Su, Jie
;
Han, Zhaolong
;
Zhou, Dai
;
Zhao, Yongsheng
;
Bao, Yan
.
ENERGY CONVERSION AND MANAGEMENT,
2021, 244

Chen, Yaoran
论文数: 0 引用数: 0
h-index: 0
机构:
Shanghai Jiao Tong Univ, Sch Naval Architecture Ocean & Civil Engn, Shanghai 200240, Peoples R China Shanghai Jiao Tong Univ, Sch Naval Architecture Ocean & Civil Engn, Shanghai 200240, Peoples R China

Wang, Yan
论文数: 0 引用数: 0
h-index: 0
机构:
Shanghai Jiao Tong Univ, Sch Naval Architecture Ocean & Civil Engn, Shanghai 200240, Peoples R China Shanghai Jiao Tong Univ, Sch Naval Architecture Ocean & Civil Engn, Shanghai 200240, Peoples R China

Dong, Zhikun
论文数: 0 引用数: 0
h-index: 0
机构:
Shanghai Jiao Tong Univ, Sch Naval Architecture Ocean & Civil Engn, Shanghai 200240, Peoples R China Shanghai Jiao Tong Univ, Sch Naval Architecture Ocean & Civil Engn, Shanghai 200240, Peoples R China

Su, Jie
论文数: 0 引用数: 0
h-index: 0
机构:
Shanghai Jiao Tong Univ, Sch Naval Architecture Ocean & Civil Engn, Shanghai 200240, Peoples R China Shanghai Jiao Tong Univ, Sch Naval Architecture Ocean & Civil Engn, Shanghai 200240, Peoples R China

Han, Zhaolong
论文数: 0 引用数: 0
h-index: 0
机构:
Shanghai Jiao Tong Univ, Sch Naval Architecture Ocean & Civil Engn, Shanghai 200240, Peoples R China
Shanghai Jiao Tong Univ, State Key Lab Ocean Engn, Shanghai 200240, Peoples R China
Shanghai Jiao Tong Univ, Minist Educ, Key Lab Hydrodynam, Shanghai 200240, Peoples R China
Shanghai Jiao Tong Univ, Shanghai Key Lab Digital Maintenance Bldg & Infra, Shanghai 200240, Peoples R China Shanghai Jiao Tong Univ, Sch Naval Architecture Ocean & Civil Engn, Shanghai 200240, Peoples R China

论文数: 引用数:
h-index:
机构:

Zhao, Yongsheng
论文数: 0 引用数: 0
h-index: 0
机构:
Shanghai Jiao Tong Univ, Sch Naval Architecture Ocean & Civil Engn, Shanghai 200240, Peoples R China
Shanghai Jiao Tong Univ, State Key Lab Ocean Engn, Shanghai 200240, Peoples R China Shanghai Jiao Tong Univ, Sch Naval Architecture Ocean & Civil Engn, Shanghai 200240, Peoples R China

Bao, Yan
论文数: 0 引用数: 0
h-index: 0
机构:
Shanghai Jiao Tong Univ, Sch Naval Architecture Ocean & Civil Engn, Shanghai 200240, Peoples R China
Shanghai Jiao Tong Univ, State Key Lab Ocean Engn, Shanghai 200240, Peoples R China
Shanghai Jiao Tong Univ, Minist Educ, Key Lab Hydrodynam, Shanghai 200240, Peoples R China
Shanghai Jiao Tong Univ, Shanghai Key Lab Digital Maintenance Bldg & Infra, Shanghai 200240, Peoples R China Shanghai Jiao Tong Univ, Sch Naval Architecture Ocean & Civil Engn, Shanghai 200240, Peoples R China
[5]
Bootstrap confidence intervals for multiple change points based on moving sum procedures
[J].
Cho, Haeran
;
Kirch, Claudia
.
COMPUTATIONAL STATISTICS & DATA ANALYSIS,
2022, 175

Cho, Haeran
论文数: 0 引用数: 0
h-index: 0
机构:
Univ Bristol, Inst Stat Sci, Sch Math, Bristol, England Univ Bristol, Inst Stat Sci, Sch Math, Bristol, England

Kirch, Claudia
论文数: 0 引用数: 0
h-index: 0
机构:
Otto von Guericke Univ, Ctr Behav Brain Sci CBBS, Dept Math, Magdeburg, Germany Univ Bristol, Inst Stat Sci, Sch Math, Bristol, England
[6]
A gated recurrent unit neural networks based wind speed error correction model for short-term wind power forecasting
[J].
Ding, Min
;
Zhou, Hao
;
Xie, Hua
;
Wu, Min
;
Nakanishi, Yosuke
;
Yokoyama, Ryuichi
.
NEUROCOMPUTING,
2019, 365
:54-61

Ding, Min
论文数: 0 引用数: 0
h-index: 0
机构:
China Univ Geosci, Sch Automat, Wuhan 430074, Hubei, Peoples R China
Hubei Key Lab Adv Control & Intelligent Automat C, Wuhan 430074, Hubei, Peoples R China China Univ Geosci, Sch Automat, Wuhan 430074, Hubei, Peoples R China

Zhou, Hao
论文数: 0 引用数: 0
h-index: 0
机构:
China Univ Geosci, Sch Automat, Wuhan 430074, Hubei, Peoples R China
Hubei Key Lab Adv Control & Intelligent Automat C, Wuhan 430074, Hubei, Peoples R China China Univ Geosci, Sch Automat, Wuhan 430074, Hubei, Peoples R China

Xie, Hua
论文数: 0 引用数: 0
h-index: 0
机构:
China Univ Geosci, Sch Automat, Wuhan 430074, Hubei, Peoples R China
Hubei Key Lab Adv Control & Intelligent Automat C, Wuhan 430074, Hubei, Peoples R China China Univ Geosci, Sch Automat, Wuhan 430074, Hubei, Peoples R China

Wu, Min
论文数: 0 引用数: 0
h-index: 0
机构:
China Univ Geosci, Sch Automat, Wuhan 430074, Hubei, Peoples R China
Hubei Key Lab Adv Control & Intelligent Automat C, Wuhan 430074, Hubei, Peoples R China China Univ Geosci, Sch Automat, Wuhan 430074, Hubei, Peoples R China

Nakanishi, Yosuke
论文数: 0 引用数: 0
h-index: 0
机构:
Waseda Univ, Grad Sch Environm & Energy Engn, Tokyo 1698555, Japan China Univ Geosci, Sch Automat, Wuhan 430074, Hubei, Peoples R China

Yokoyama, Ryuichi
论文数: 0 引用数: 0
h-index: 0
机构:
Waseda Univ, Grad Sch Environm & Energy Engn, Tokyo 1698555, Japan China Univ Geosci, Sch Automat, Wuhan 430074, Hubei, Peoples R China
[7]
A combined short-term wind speed forecasting model based on CNN-RNN and linear regression optimization considering error
[J].
Duan, Jikai
;
Chang, Mingheng
;
Chen, Xiangyue
;
Wang, Wenpeng
;
Zuo, Hongchao
;
Bai, Yulong
;
Chen, Bolong
.
RENEWABLE ENERGY,
2022, 200
:788-808

Duan, Jikai
论文数: 0 引用数: 0
h-index: 0
机构:
Lanzhou Univ, Coll Atmospher Sci, Lanzhou 730000, Peoples R China Lanzhou Univ, Coll Atmospher Sci, Lanzhou 730000, Peoples R China

Chang, Mingheng
论文数: 0 引用数: 0
h-index: 0
机构:
Lanzhou Univ, Coll Atmospher Sci, Lanzhou 730000, Peoples R China Lanzhou Univ, Coll Atmospher Sci, Lanzhou 730000, Peoples R China

Chen, Xiangyue
论文数: 0 引用数: 0
h-index: 0
机构:
Lanzhou Univ, Coll Atmospher Sci, Lanzhou 730000, Peoples R China Lanzhou Univ, Coll Atmospher Sci, Lanzhou 730000, Peoples R China

Wang, Wenpeng
论文数: 0 引用数: 0
h-index: 0
机构:
Lanzhou Univ, Coll Atmospher Sci, Lanzhou 730000, Peoples R China Lanzhou Univ, Coll Atmospher Sci, Lanzhou 730000, Peoples R China

Zuo, Hongchao
论文数: 0 引用数: 0
h-index: 0
机构:
Lanzhou Univ, Coll Atmospher Sci, Lanzhou 730000, Peoples R China Lanzhou Univ, Coll Atmospher Sci, Lanzhou 730000, Peoples R China

Bai, Yulong
论文数: 0 引用数: 0
h-index: 0
机构:
Northwest Normal Univ, Coll Phys & Elect Engn, Lanzhou 730070, Peoples R China Lanzhou Univ, Coll Atmospher Sci, Lanzhou 730000, Peoples R China

Chen, Bolong
论文数: 0 引用数: 0
h-index: 0
机构:
Lanzhou Univ, Coll Atmospher Sci, Lanzhou 730000, Peoples R China Lanzhou Univ, Coll Atmospher Sci, Lanzhou 730000, Peoples R China
[8]
A bi-level ensemble learning approach to complex time series forecasting: Taking exchange rates as an example
[J].
Hao, Jun
;
Feng, Qian Qian
;
Li, Jianping
;
Sun, Xiaolei
.
JOURNAL OF FORECASTING,
2023, 42 (06)
:1385-1406

Hao, Jun
论文数: 0 引用数: 0
h-index: 0
机构:
Univ Chinese Acad Sci, Sch Econ & Management, Beijing, Peoples R China
MOE Social Sci Lab Digital Econ Forecasts & Policy, Beijing, Peoples R China Univ Chinese Acad Sci, Sch Econ & Management, Beijing, Peoples R China

Feng, Qian Qian
论文数: 0 引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Sci & Dev, Beijing, Peoples R China
Univ Chinese Acad Sci, Sch Publ Policy & Management, Beijing, Peoples R China Univ Chinese Acad Sci, Sch Econ & Management, Beijing, Peoples R China

Li, Jianping
论文数: 0 引用数: 0
h-index: 0
机构:
Univ Chinese Acad Sci, Sch Econ & Management, Beijing, Peoples R China
MOE Social Sci Lab Digital Econ Forecasts & Policy, Beijing, Peoples R China Univ Chinese Acad Sci, Sch Econ & Management, Beijing, Peoples R China

Sun, Xiaolei
论文数: 0 引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Sci & Dev, Beijing, Peoples R China
Univ Chinese Acad Sci, Sch Publ Policy & Management, Beijing, Peoples R China
Chinese Acad Sci, Inst Sci & Dev, Beijing 100190, Peoples R China Univ Chinese Acad Sci, Sch Econ & Management, Beijing, Peoples R China
[9]
A cooperative ensemble method for multistep wind speed probabilistic forecasting
[J].
He, Yaoyao
;
Wang, Yun
;
Wang, Shuo
;
Yao, Xin
.
CHAOS SOLITONS & FRACTALS,
2022, 162

He, Yaoyao
论文数: 0 引用数: 0
h-index: 0
机构:
Hefei Univ Technol, Sch Management, Hefei 230009, Peoples R China
Hefei Univ Technol, Key Lab Proc Optimizat & Intelligent Decis Making, Minist Educ, Hefei 230009, Peoples R China Hefei Univ Technol, Sch Management, Hefei 230009, Peoples R China

Wang, Yun
论文数: 0 引用数: 0
h-index: 0
机构:
Hefei Univ Technol, Sch Management, Hefei 230009, Peoples R China
Hefei Univ Technol, Key Lab Proc Optimizat & Intelligent Decis Making, Minist Educ, Hefei 230009, Peoples R China Hefei Univ Technol, Sch Management, Hefei 230009, Peoples R China

Wang, Shuo
论文数: 0 引用数: 0
h-index: 0
机构:
Univ Birmingham, Sch Comp Sci, Birmingham B15 2TT, W Midlands, England Hefei Univ Technol, Sch Management, Hefei 230009, Peoples R China

Yao, Xin
论文数: 0 引用数: 0
h-index: 0
机构:
Univ Birmingham, Sch Comp Sci, Birmingham B15 2TT, W Midlands, England
Southern Univ Sci & Technol, Sch Comp Sci & Engn, Shenzhen 518055, Peoples R China Hefei Univ Technol, Sch Management, Hefei 230009, Peoples R China
[10]
Short-term wind power prediction based on EEMD-LASSO-QRNN model
[J].
He, Yaoyao
;
Wang, Yun
.
APPLIED SOFT COMPUTING,
2021, 105 (105)

He, Yaoyao
论文数: 0 引用数: 0
h-index: 0
机构:
Hefei Univ Technol, Sch Management, Hefei 230009, Peoples R China
Hefei Univ Technol, Minist Educ, Key Lab Proc Optimizat & Intelligent Decis Making, Hefei 230009, Peoples R China Hefei Univ Technol, Sch Management, Hefei 230009, Peoples R China

Wang, Yun
论文数: 0 引用数: 0
h-index: 0
机构:
Hefei Univ Technol, Sch Management, Hefei 230009, Peoples R China
Hefei Univ Technol, Minist Educ, Key Lab Proc Optimizat & Intelligent Decis Making, Hefei 230009, Peoples R China Hefei Univ Technol, Sch Management, Hefei 230009, Peoples R China