ON METRICS FOR ANALYSIS OF FUNCTIONAL DATA ON GEOMETRIC DOMAINS

被引:0
作者
Anbouhi, Soheil [1 ]
Mio, Washington [2 ]
Okutan, Osman berat [3 ]
机构
[1] Western Carolina Univ, Dept Math & Comp Sci, Cullowhee, NC 28723 USA
[2] Florida Sate Univ, Dept Math, Tallahassee, FL 32306 USA
[3] Max Planck Inst Math Sci, Berlin, Germany
来源
FOUNDATIONS OF DATA SCIENCE | 2024年
关键词
Functional data; Gromov-Prohorov distance; Gromov-Wasserstein dis- tance; optimal transport; functional curvature; SPACE;
D O I
10.3934/fods.2024046
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
. This paper employs techniques from metric geometry and optimal transport theory to address questions related to the analysis of functional data on metric or metric-measure spaces, which we refer to as fields. Formally, fields are viewed as 1-Lipschitz mappings between Polish metric spaces with the domain possibly equipped with a Borel probability measure. We introduce field analogues of the Gromov-Hausdorff, Gromov-Prokhorov, and Gromov-Wasserstein distances, investigate their main properties and provide a characterization of the Gromov-Hausdorff distance in terms of isometric embeddings in a Urysohn universal field. Adapting the notion of distance matrices to fields, we formulate a discrete model, obtain an empirical estimation result that provides a theoretical basis for its use in functional data analysis, and prove a field analogue of Gromov's Reconstruction Theorem. We also investigate field versions of the Vietoris-Rips and neighborhood (or offset) filtrations and prove that they are stable with respect to appropriate metrics.
引用
收藏
页码:671 / 704
页数:34
相关论文
共 50 条
  • [41] Categorical Functional Data Analysis. The cfda R Package
    Preda, Cristian
    Grimonprez, Quentin
    Vandewalle, Vincent
    [J]. MATHEMATICS, 2021, 9 (23)
  • [42] ANALYSIS OF VARIANCE WITH FUNCTIONAL DATA TO DETECT COLOR CHANGES IN GRANITE
    Rivas, T.
    Taboada, J.
    Ordonez, C.
    Matias, J. M.
    [J]. IJCCI 2009: PROCEEDINGS OF THE INTERNATIONAL JOINT CONFERENCE ON COMPUTATIONAL INTELLIGENCE, 2009, : 540 - +
  • [43] Exploratory analysis of functional data via clustering and optimal segmentation
    Hebrail, Georges
    Hugueney, Bernard
    Lechevallier, Yves
    Rossi, Fabrice
    [J]. NEUROCOMPUTING, 2010, 73 (7-9) : 1125 - 1141
  • [44] Testing linearity in semi-parametric functional data analysis
    Aneiros-Perez, German
    Vieu, Philippe
    [J]. COMPUTATIONAL STATISTICS, 2013, 28 (02) : 413 - 434
  • [45] Testing linearity in semi-parametric functional data analysis
    Germán Aneiros-Pérez
    Philippe Vieu
    [J]. Computational Statistics, 2013, 28 : 413 - 434
  • [46] Classification of social media users with generalized functional data analysis
    Weishampel, Anthony
    Staicu, Ana -Maria
    Rand, William
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2023, 179
  • [47] River flow modelling using nonparametric functional data analysis
    Quintela-del-Rio, A.
    Francisco-Fernandez, M.
    [J]. JOURNAL OF FLOOD RISK MANAGEMENT, 2018, 11 : S902 - S915
  • [48] An Application of U-Statistics to Nonparametric Functional Data Analysis
    Fu, Ke-Ang
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2012, 41 (09) : 1532 - 1542
  • [49] Testing normality of spatially indexed functional data
    Hoermann, Siegfried
    Kokoszka, Piotr
    Kuenzer, Thomas
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2022, 50 (01): : 304 - 326
  • [50] MULTIPLE CHANGE POINT DETECTION IN FUNCTIONAL DATA WITH APPLICATIONS TO BIOMECHANICAL FATIGUE DATA
    Bastian, Patrick
    Basu, Rupsa
    Dette, Holger
    [J]. ANNALS OF APPLIED STATISTICS, 2024, 18 (04) : 3109 - 3129