TRPA1 and thermosensitivity

被引:0
作者
Tominaga, Makoto [1 ]
Iwata, Moe [1 ]
机构
[1] Nagoya City Univ, Nagoya Adv Res & Dev Ctr, Thermal Biol Res Grp, Kawasumi 1,Mizuho Cho,Mizuho Ku, Nagoya 4678601, Japan
关键词
TRPA1; Temperature; Thermosensitivity; Ion channels; Cold; Heat; POTENTIAL ANKYRIN 1; ION-CHANNEL TRPA1; DICTATE SENSITIVITY; CAPSAICIN RECEPTOR; HEAT; COLD; THERMOSENSATION; A1; ACTIVATION; UNDERLIES;
D O I
10.1016/j.jphyss.2025.100010
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
TRPA1 was first identified as a noxious cold receptor in mice in 2003. Multiple TRPA1 genes have since been isolated, indicating that TRPA1 emerged early in evolution and showing the existence of TRPA1 variants in a range of species, including insects. Although TRPA1 channels in insects to birds (endotherms) show heat-dependent activation that indicates the importance of TRPA1 for detecting ambient warm to hot temperatures, in mammals TRPA1 temperature sensitivity remains controversial. Analyses of insect TRPA1 highlighted several important structural motifs, but the structural basis of heat-evoked activation is still unclear. Furthermore, atomic-level structures of TRPA1 solved using single particle analysis with cryo-electron microscopy did not reveal a basis for TRPA1 thermosensitivity. Recent studies did demonstrate that human TRPA1 has bimodal thermosensitivity and mouse TRPA1 is involved in noxious heat sensitivity, but additional systematic analyses are needed to determine the general mechanism of mammalian TRPA1 thermosensitivity.
引用
收藏
页数:6
相关论文
共 60 条
  • [41] Saito S., Saito C.T., Igawa T., Takeda N., Komaki S., Ohta T., Tominaga M., Evolutionary tuning of transient receptor potential ankyrin 1 underlies the variation in heat avoidance behaviors among frog species inhabiting diverse thermal niches, Mol. Biol. Evol., 39, (2022)
  • [42] Prober D.A., Zimmerman S., Myers B.R., McDermott B.M., Kim S.H., Caron S., Rihel J., Solnica-Krezel L., Julius D., Hudspeth A.J., Schier A.F., Zebrafish TRPA1 channels are required for chemosensation but not for thermosensation or mechanosensory hair cell function, J. Neurosci., 28, pp. 10102-10110, (2008)
  • [43] Gracheva E.O., Cordero-Morales J.F., Gonzalez-Carcacia J.A., Ingolia N.T., Manno C., Aranguren C.I., Weissman J.S., Julius D., Ganglion-specific splicing of TRPV1 underlies infrared sensation in vampire bats, Nature, 476, pp. 88-91, (2011)
  • [44] Geng J., Liang D., Jiang K., Zhang P., Molecular evolution of the infrared sensory gene TRPA1 in snakes and implications for functional studies, PLoS One, 6, (2011)
  • [45] Yokoyama S., Altun A., DeNardo D.F., Molecular convergence of infrared vision in snakes, Mol. Biol. Evol., 28, pp. 45-48, (2011)
  • [46] Takahashi N., Kuwaki T., Kiyonaka S., Numata T., Kozai D., Mizuno Y., Yamamoto S., Naito S., Knevels E., Carmeliet P., Oga T., Kaneko S., Suga S., Nokami T., Yoshida J., Mori Y., TRPA1 underlies a sensing mechanism for O2, Nat. Chem. Biol., 7, pp. 701-711, (2011)
  • [47] Ogawa N., Kurokawa T., Mori Y., Sensing of redox status by TRP channels, Cell Calcium, 60, pp. 115-122, (2016)
  • [48] Zurborg S., Yurgionas B., Jira J.A., Caspani O., Heppenstall P.A., Direct activation of the ion channel TRPA1 by Ca2+, Nat. Neurosci., 10, pp. 277-279, (2007)
  • [49] Doerner J.F., Gisselmann G., Hatt H., Wetzel C.H., Transient receptor potential channel A1 is directly gated by calcium ions, J. Biol. Chem., 282, pp. 13180-13189, (2007)
  • [50] Zhong L., Bellemer A., Yan H., Ken H., Jessica R., Hwang R.Y., Pitt G.S., Tracey W.D., Thermosensory and nonthermosensory isoforms of Drosophila melanogaster TRPA1 reveal heat-sensor domains of a thermoTRP Channel, Cell Rep., 1, pp. 43-55, (2012)