Transcriptome Analysis Reveals Key Genes and Pathways Associated with Cadmium Stress Tolerance in Solanum aculeatissimum C. B. Clarke

被引:1
|
作者
Wu, Suying [1 ,2 ]
Sun, Zhenghai [1 ]
Li, Liping [3 ]
机构
[1] Southwest Forestry Univ, Coll Landscape & Hort, Kunming 650224, Peoples R China
[2] HaiNan Univ, Inst Informat, Haikou 570206, Peoples R China
[3] Southwest Forestry Univ, Coll Wetland, Kunming 650224, Peoples R China
来源
AGRICULTURE-BASEL | 2024年 / 14卷 / 10期
关键词
Solanum aculeatissimum; Cd stress; antioxidant system; transcriptome; OXIDATIVE STRESS; HEAVY-METALS; LIPID-PEROXIDATION; SEED-GERMINATION; DEFENSE SYSTEM; CD; GROWTH; L; ACCUMULATION; EXPRESSION;
D O I
10.3390/agriculture14101686
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
As a great economic Solanum with ornamental value and good adaptability, Solanum aculeatissimum is considered an excellent candidate for the phytoremediation of Cadmium-contaminated soils. However, there are no studies on the involvement of S. aculeatissimum in the response and tolerance mechanisms of cadmium (Cd) stress. In the present study, S. aculeatissimum was used for the first time for physiological and transcriptomic systematic analysis under different concentrations of Cd stress. The results showed that S. aculeatissimum was indeed well tolerant to Cd and showed Cd enrichment capabilities. Under the Cd stress treatment of 50 mg/kg (Cd6), S. aculeatissimum could still grow normally. At the 90th day of Cd stress, the amount of Cd content in different parts of the plant at the same concentration was in the order of root > stem > leaf. With the extension of the stress time up to 163 d, the trend of Cd content in each part was not consistent, and the results in the root (77.74 mg/kg), stem (30.01 mg/kg), leaf (29.44 mg/kg), immature fruit (18.36 mg/kg), and mature fruit (21.13 mg/kg) of Cd peaked at Cd4, Cd5, Cd1, Cd4, and Cd4, respectively. The enrichment and transport coefficients of all treatments were greater than 1. The treatment groups with the largest and smallest enrichment coefficients were Cd4 and CK, respectively. The treatment groups with the largest and smallest transport coefficients were CK and Cd4, respectively. Malondialdehyde (MDA), peroxidase (POD), and catalase (CAT) in the antioxidant system after Cd stress treatment were significantly increased compared to the untreated group. Under cadmium stress, by using real-time quantitative PCR, four genes (SaHMA20, SaL-AO, SaPrxs4, and SaPCs) were screened for possible correlations to Cd tolerance and absorption enrichment in S. aculeatissimum. The key DEGs are mainly responsible for the metabolic pathways of heavy metal ATPases, plastocyanin protein phytocyanins (PCs), peroxidases (Prxs), and ascorbate oxidase (AAO); these differential genes are believed to play an important role in Cd tolerance and absorption enrichment in S. aculeatissimum.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] Comparative transcriptome and coexpression network analysis reveals key pathways and hub candidate genes associated with sunflower (Helianthus annuus L.) drought tolerance
    Huimin Shi
    Jianhua Hou
    Dandan Li
    Haibo Hu
    Yanxia Wang
    Yang Wu
    Liuxi Yi
    BMC Plant Biology, 24
  • [22] Comparative transcriptome and coexpression network analysis reveals key pathways and hub candidate genes associated with sunflower (Helianthus annuus L.) drought tolerance
    Shi, Huimin
    Hou, Jianhua
    Li, Dandan
    Hu, Haibo
    Wang, Yanxia
    Wu, Yang
    Yi, Liuxi
    BMC PLANT BIOLOGY, 2024, 24 (01)
  • [23] Genome-Wide Transcriptome Analysis Reveals that Cadmium Stress Signaling Controls the Expression of Genes in Drought Stress Signal Pathways in Rice
    Oono, Youko
    Yazawa, Takayuki
    Kawahara, Yoshihiro
    Kanamori, Hiroyuki
    Kobayashi, Fuminori
    Sasaki, Harumi
    Mori, Satomi
    Wu, Jianzhong
    Handa, Hirokazu
    Itoh, Takeshi
    Matsumoto, Takashi
    PLOS ONE, 2014, 9 (05):
  • [24] Transcriptome Analysis Reveals the Stress Tolerance to and Accumulation Mechanisms of Cadmium in Paspalum vaginatum Swartz
    Xu, Lei
    Zheng, Yuying
    Yu, Qing
    Liu, Jun
    Yang, Zhimin
    Chen, Yu
    PLANTS-BASEL, 2022, 11 (16):
  • [25] Transcriptome analysis reveals key drought-stress-responsive genes in soybean
    Li, Mingqian
    Li, Hainan
    Sun, Anni
    Wang, Liwei
    Ren, Chuanyou
    Liu, Jiang
    Gao, Xining
    FRONTIERS IN GENETICS, 2022, 13
  • [26] Transcriptome Analysis Reveals Key Pathways and Genes Involved in Lodging Resistance of Upland Cotton
    Wang, Yuan
    Feng, Ao
    Zhao, Caiwang
    Ma, Xiaomei
    Zhang, Xinyu
    Li, Yanjun
    Sun, Jie
    PLANTS-BASEL, 2024, 13 (24):
  • [27] Comparative Transcriptome Analysis Reveals Key Genes and Pathways Involved in Prickle Development in Eggplant
    Zhang, Lei
    Sun, Haoyun
    Xu, Tao
    Shi, Tianye
    Li, Zongyun
    Hou, Wenqian
    GENES, 2021, 12 (03) : 1 - 16
  • [28] Global Transcriptome Analysis Reveals Corresponding Genes and Key Pathways Involved in Oxidative Stress in Mouse Small Intestinal Cells
    He, Y.
    Feng, C. P.
    Li, J. L.
    Du, R.
    MOLECULAR BIOLOGY, 2024, 58 (04) : 790 - 802
  • [29] Transcriptome analysis of genes and pathways associated with salt tolerance in alfalfa under non-uniform salt stress
    Xiong, Xue
    Wei, Yu-qi
    Chen, Ji-hui
    Liu, Nan
    Zhang, Ying-jun
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2020, 151 : 323 - 333
  • [30] Genome-wide transcriptome analysis reveals differentially expressed genes and key signalling pathways associated with cryptorchidism in pigs
    Bhaskaran, Bimal Chakkingal
    Meyermans, Roel
    Gorssen, Wim
    van den Bogaert, Kasper
    Wenger, Jess Bouhuijzen
    Maes, Gregory E.
    Buyse, Johan
    Janssens, Steven
    Buys, Nadine
    SCIENTIFIC REPORTS, 2025, 15 (01):