Machine learning for prediction of postoperative complications after hepato-biliary and pancreatic surgery

被引:8
作者
Shapey, Iestyn M. [1 ,2 ]
Sultan, Mustafa [3 ]
机构
[1] St James Univ Hosp, Dept Pancreat Surg, Beckett St, Leeds LS9 7TF, England
[2] Univ Leeds, Fac Med & Hlth, Leeds LS9 7TF, England
[3] Manchester Univ NHS Fdn Trust, Manchester M13 9PT, England
来源
ARTIFICIAL INTELLIGENCE SURGERY | 2023年 / 3卷 / 01期
关键词
Machine Learning; artificial intelligence; hepatic surgery; pancreatic surgery; INTERNATIONAL STUDY-GROUP; EARLY WARNING SCORE; OLDER PATIENTS; FISTULA; PANCREATICODUODENECTOMY; DEFINITION; HEMORRHAGE; FAILURE; REMNANT; MODEL;
D O I
10.20517/ais.2022.31
中图分类号
R61 [外科手术学];
学科分类号
摘要
Decision making in Hepatobiliary and Pancreatic Surgery is challenging, not least because of the significant complications that may occur following surgery and the complexity of interventions to treat them. Machine Learning (ML) relates to the use of computer derived algorithms and systems to enhance knowledge in order to facilitate decision making and could be of great benefit to surgical patients. ML could be employed pre- or perioperatively to shape treatment choices prospectively, or could be utilised in the post-hoc analysis of complications in order to inform future practice. ML could reduce errors by drawing attention to known risks of complications through supervised learning, and gain greater insights by identifying previously under-appreciated aspects of care through unsupervised learning. Accuracy, validity and integrity of data are of fundamental importance if predictive models generated by ML are to be successfully integrated into surgical practice. The choice of appropriate ML models and the interface between ML, traditional statistical methodologies and human expertise will also impact the potential to incorporate data science techniques into daily clinical practice.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 53 条
[1]   A novel reliability-based regression model to analyze and forecast the severity of COVID-19 patients [J].
Bakhtiarvand, Negar ;
Khashei, Mehdi ;
Mahnam, Mehdi ;
Hajiahmadi, Somayeh .
BMC MEDICAL INFORMATICS AND DECISION MAKING, 2022, 22 (01)
[2]   The 2016 update of the International Study Group (ISGPS) definition and grading of postoperative pancreatic fistula: 11 Years After [J].
Bassi, Claudio ;
Marchegiani, Giovanni ;
Dervenis, Christos ;
Sarr, Micheal ;
Abu Hilal, Mohammad ;
Adham, Mustapha ;
Allen, Peter ;
Andersson, Roland ;
Asbun, Horacio J. ;
Besselink, Marc G. ;
Conlon, Kevin ;
Del Chiaro, Marco ;
Falconi, Massimo ;
Fernandez-Cruz, Laureano ;
Fernandez-Del Castillo, Carlos ;
Fingerhut, Abe ;
Friess, Helmut ;
Gouma, Dirk J. ;
Hackert, Thilo ;
Izbicki, Jakob ;
Lillemoe, Keith D. ;
Neoptolemos, John P. ;
Olah, Attila ;
Schulick, Richard ;
Shrikhande, Shailesh V. ;
Takada, Tadahiro ;
Takaori, Kyoichi ;
Traverso, William ;
Vollmer, Charles ;
Wolfgang, Christopher L. ;
Yeo, Charles J. ;
Salvia, Roberto ;
Buehler, Marcus .
SURGERY, 2017, 161 (03) :584-591
[3]   Reducing cardiac arrests in the acute admissions unit: a quality improvement journey [J].
Beckett, Daniel J. ;
Inglis, Monica ;
Oswald, Sharon ;
Thomson, Elaine ;
Harley, Wilma ;
Wilson, Jennifer ;
Lloyd, Robert C. ;
Rooney, Kevin D. .
BMJ QUALITY & SAFETY, 2013, 22 (12) :1025-1031
[4]   A Prospectively Validated Clinical Risk Score Accurately Predicts Pancreatic Fistula after Pancreatoduodenectomy [J].
Callery, Mark P. ;
Pratt, Wande B. ;
Kent, Tara S. ;
Chaikof, Elliot L. ;
Vollmer, Charles M., Jr. .
JOURNAL OF THE AMERICAN COLLEGE OF SURGEONS, 2013, 216 (01) :1-14
[5]   A machine learning risk model based on preoperative computed tomography scan to predict postoperative outcomes after pancreatoduodenectomy [J].
Capretti, Giovanni ;
Bonifacio, Cristiana ;
De Palma, Crescenzo ;
Nebbia, Martina ;
Giannitto, Caterina ;
Cancian, Pierandrea ;
Laino, Maria Elena ;
Balzarini, Luca ;
Papanikolaou, Nickolas ;
Savevski, Victor ;
Zerbi, Alessandro .
UPDATES IN SURGERY, 2022, 74 (01) :235-243
[6]   Assessment of Hepatic Arterial Infusion of Floxuridine in Combination With Systemic Gemcitabine and Oxaliplatin in Patients With Unresectable Intrahepatic Cholangiocarcinoma A Phase 2 Clinical Trial [J].
Cercek, Andrea ;
Boerner, Thomas ;
Tan, Benjamin R. ;
Chou, Joanne F. ;
Goenen, Mithat ;
Boucher, Taryn M. ;
Hauser, Haley F. ;
Do, Richard K. G. ;
Lowery, Maeve A. ;
Harding, James J. ;
Varghese, Anna M. ;
Reidy-Lagunes, Diane ;
Saltz, Leonard ;
Schultz, Nikolaus ;
Kingham, T. Peter ;
D'Angelica, Michael I. ;
DeMatteo, Ronald P. ;
Drebin, Jeffrey A. ;
Allen, Peter J. ;
Balachandran, Vinod P. ;
Lim, Kian-Huat ;
Sanchez-Vega, Francisco ;
Vachharajani, Neeta ;
Majella Doyle, Maria B. ;
Fields, Ryan C. ;
Hawkins, William G. ;
Strasberg, Steven M. ;
Chapman, William C. ;
Diaz, Luis A. ;
Kemeny, Nancy E. ;
Jarnagin, William R. .
JAMA ONCOLOGY, 2020, 6 (01) :60-67
[7]   The hepatitis B epidemic in China should receive more attention [J].
Chen, Shanquan ;
Li, Jun ;
Wang, Dan ;
Fung, Hong ;
Wong, Lai-yi ;
Zhao, Lu .
LANCET, 2018, 391 (10130) :1572-1572
[8]   Reporting of artificial intelligence prediction models [J].
Collins, Gary S. ;
Moons, Karel G. M. .
LANCET, 2019, 393 (10181) :1577-1579
[9]   Predicting Outcomes in Patients Undergoing Pancreatectomy Using Wearable Technology and Machine Learning: Prospective Cohort Study [J].
Cos, Heidy ;
Li, Dingwen ;
Williams, Gregory ;
Chininis, Jeffrey ;
Dai, Ruixuan ;
Zhang, Jingwen ;
Srivastava, Rohit ;
Raper, Lacey ;
Sanford, Dominic ;
Hawkins, William ;
Lu, Chenyang ;
Hammill, Chet W. .
JOURNAL OF MEDICAL INTERNET RESEARCH, 2021, 23 (03)
[10]   Increase in future remnant liver function after preoperative portal vein embolization [J].
de Graaf, W. ;
van Lienden, K. P. ;
van den Esschert, J. W. ;
Bennink, R. J. ;
van Gulik, T. M. .
BRITISH JOURNAL OF SURGERY, 2011, 98 (06) :825-834