Machine learning for prediction of postoperative complications after hepato-biliary and pancreatic surgery

被引:3
作者
Shapey, Iestyn M. [1 ,2 ]
Sultan, Mustafa [3 ]
机构
[1] St James Univ Hosp, Dept Pancreat Surg, Beckett St, Leeds LS9 7TF, England
[2] Univ Leeds, Fac Med & Hlth, Leeds LS9 7TF, England
[3] Manchester Univ NHS Fdn Trust, Manchester M13 9PT, England
来源
ARTIFICIAL INTELLIGENCE SURGERY | 2023年 / 3卷 / 01期
关键词
Machine Learning; artificial intelligence; hepatic surgery; pancreatic surgery; INTERNATIONAL STUDY-GROUP; EARLY WARNING SCORE; OLDER PATIENTS; FISTULA; PANCREATICODUODENECTOMY; DEFINITION; HEMORRHAGE; FAILURE; REMNANT; MODEL;
D O I
10.20517/ais.2022.31
中图分类号
R61 [外科手术学];
学科分类号
摘要
Decision making in Hepatobiliary and Pancreatic Surgery is challenging, not least because of the significant complications that may occur following surgery and the complexity of interventions to treat them. Machine Learning (ML) relates to the use of computer derived algorithms and systems to enhance knowledge in order to facilitate decision making and could be of great benefit to surgical patients. ML could be employed pre- or perioperatively to shape treatment choices prospectively, or could be utilised in the post-hoc analysis of complications in order to inform future practice. ML could reduce errors by drawing attention to known risks of complications through supervised learning, and gain greater insights by identifying previously under-appreciated aspects of care through unsupervised learning. Accuracy, validity and integrity of data are of fundamental importance if predictive models generated by ML are to be successfully integrated into surgical practice. The choice of appropriate ML models and the interface between ML, traditional statistical methodologies and human expertise will also impact the potential to incorporate data science techniques into daily clinical practice.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 54 条
  • [1] A novel reliability-based regression model to analyze and forecast the severity of COVID-19 patients
    Bakhtiarvand, Negar
    Khashei, Mehdi
    Mahnam, Mehdi
    Hajiahmadi, Somayeh
    [J]. BMC MEDICAL INFORMATICS AND DECISION MAKING, 2022, 22 (01)
  • [2] The 2016 update of the International Study Group (ISGPS) definition and grading of postoperative pancreatic fistula: 11 Years After
    Bassi, Claudio
    Marchegiani, Giovanni
    Dervenis, Christos
    Sarr, Micheal
    Abu Hilal, Mohammad
    Adham, Mustapha
    Allen, Peter
    Andersson, Roland
    Asbun, Horacio J.
    Besselink, Marc G.
    Conlon, Kevin
    Del Chiaro, Marco
    Falconi, Massimo
    Fernandez-Cruz, Laureano
    Fernandez-Del Castillo, Carlos
    Fingerhut, Abe
    Friess, Helmut
    Gouma, Dirk J.
    Hackert, Thilo
    Izbicki, Jakob
    Lillemoe, Keith D.
    Neoptolemos, John P.
    Olah, Attila
    Schulick, Richard
    Shrikhande, Shailesh V.
    Takada, Tadahiro
    Takaori, Kyoichi
    Traverso, William
    Vollmer, Charles
    Wolfgang, Christopher L.
    Yeo, Charles J.
    Salvia, Roberto
    Buehler, Marcus
    [J]. SURGERY, 2017, 161 (03) : 584 - 591
  • [3] Reducing cardiac arrests in the acute admissions unit: a quality improvement journey
    Beckett, Daniel J.
    Inglis, Monica
    Oswald, Sharon
    Thomson, Elaine
    Harley, Wilma
    Wilson, Jennifer
    Lloyd, Robert C.
    Rooney, Kevin D.
    [J]. BMJ QUALITY & SAFETY, 2013, 22 (12) : 1025 - 1031
  • [4] A Prospectively Validated Clinical Risk Score Accurately Predicts Pancreatic Fistula after Pancreatoduodenectomy
    Callery, Mark P.
    Pratt, Wande B.
    Kent, Tara S.
    Chaikof, Elliot L.
    Vollmer, Charles M., Jr.
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF SURGEONS, 2013, 216 (01) : 1 - 14
  • [5] A machine learning risk model based on preoperative computed tomography scan to predict postoperative outcomes after pancreatoduodenectomy
    Capretti, Giovanni
    Bonifacio, Cristiana
    De Palma, Crescenzo
    Nebbia, Martina
    Giannitto, Caterina
    Cancian, Pierandrea
    Laino, Maria Elena
    Balzarini, Luca
    Papanikolaou, Nickolas
    Savevski, Victor
    Zerbi, Alessandro
    [J]. UPDATES IN SURGERY, 2022, 74 (01) : 235 - 243
  • [6] Assessment of Hepatic Arterial Infusion of Floxuridine in Combination With Systemic Gemcitabine and Oxaliplatin in Patients With Unresectable Intrahepatic Cholangiocarcinoma A Phase 2 Clinical Trial
    Cercek, Andrea
    Boerner, Thomas
    Tan, Benjamin R.
    Chou, Joanne F.
    Goenen, Mithat
    Boucher, Taryn M.
    Hauser, Haley F.
    Do, Richard K. G.
    Lowery, Maeve A.
    Harding, James J.
    Varghese, Anna M.
    Reidy-Lagunes, Diane
    Saltz, Leonard
    Schultz, Nikolaus
    Kingham, T. Peter
    D'Angelica, Michael I.
    DeMatteo, Ronald P.
    Drebin, Jeffrey A.
    Allen, Peter J.
    Balachandran, Vinod P.
    Lim, Kian-Huat
    Sanchez-Vega, Francisco
    Vachharajani, Neeta
    Majella Doyle, Maria B.
    Fields, Ryan C.
    Hawkins, William G.
    Strasberg, Steven M.
    Chapman, William C.
    Diaz, Luis A.
    Kemeny, Nancy E.
    Jarnagin, William R.
    [J]. JAMA ONCOLOGY, 2020, 6 (01) : 60 - 67
  • [7] The hepatitis B epidemic in China should receive more attention
    Chen, Shanquan
    Li, Jun
    Wang, Dan
    Fung, Hong
    Wong, Lai-yi
    Zhao, Lu
    [J]. LANCET, 2018, 391 (10130) : 1572 - 1572
  • [8] Reporting of artificial intelligence prediction models
    Collins, Gary S.
    Moons, Karel G. M.
    [J]. LANCET, 2019, 393 (10181) : 1577 - 1579
  • [9] Predicting Outcomes in Patients Undergoing Pancreatectomy Using Wearable Technology and Machine Learning: Prospective Cohort Study
    Cos, Heidy
    Li, Dingwen
    Williams, Gregory
    Chininis, Jeffrey
    Dai, Ruixuan
    Zhang, Jingwen
    Srivastava, Rohit
    Raper, Lacey
    Sanford, Dominic
    Hawkins, William
    Lu, Chenyang
    Hammill, Chet W.
    [J]. JOURNAL OF MEDICAL INTERNET RESEARCH, 2021, 23 (03)
  • [10] Increase in future remnant liver function after preoperative portal vein embolization
    de Graaf, W.
    van Lienden, K. P.
    van den Esschert, J. W.
    Bennink, R. J.
    van Gulik, T. M.
    [J]. BRITISH JOURNAL OF SURGERY, 2011, 98 (06) : 825 - 834