Bidirectional 2D reservoir computing for image anomaly detection without any training

被引:0
作者
Nakanishi, Keiichi [1 ]
Tokunaga, Terumasa [2 ,3 ]
机构
[1] Kyushu Inst Technol, Grad Sch Comp Sci & Syst Engn, 680-4,Kawazu, Iizuka, Fukuoka 8208502, Japan
[2] Kyushu Inst Technol, Fac Comp Sci & Syst Engn, 680-4 Kawazu, Iizuka, Fukuoka 8208502, Japan
[3] Kyushu Inst Technol, Res Ctr Neuromorph AI Hardware, 2-4 Hibikino,Wakamatsu ku, Kitakyushu, Fukuoka 8080196, Japan
来源
IEICE NONLINEAR THEORY AND ITS APPLICATIONS | 2024年 / 15卷 / 04期
关键词
reservoir computing; echo state network; deep learning; computer vision; image anomaly detection;
D O I
10.1587/nolta.15.838
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Image anomaly detection is a crucial task in computer vision, where convolutional neural networks (CNN) often deliver exceptional performances. Hardware implementation of machine learning models is also important for achieving inference speed-up and power savings. However, the massive number of CNN parameters poses challenges for hardware implementation. This study introduces reservoir computing (RC) to create a compact image processor without training, thereby enabling scalable deployment. Our proposed bidirectional 2-dimensional reservoir computing (BiRC2D) is a feature extractor based on RC. Experiments conducted on the MVTec AD dataset, a benchmark dataset for real-world anomaly detection task, validated the efficacy of BiRC2D when integrated into the patch distribution modeling (PaDiM) framework. The mean intersection over union (mIoU) score from PaDiM with BiRC2D outperformed or was comparable to the mIoU score from PaDiM with ResNet-50 in several categories while reducing the parameter count by up to 98%.
引用
收藏
页码:838 / 850
页数:13
相关论文
共 20 条
  • [1] GANomaly: Semi-supervised Anomaly Detection via Adversarial Training
    Akcay, Samet
    Atapour-Abarghouei, Amir
    Breckon, Toby P.
    [J]. COMPUTER VISION - ACCV 2018, PT III, 2019, 11363 : 622 - 637
  • [2] MVTec AD - A Comprehensive Real-World Dataset for Unsupervised Anomaly Detection
    Bergmann, Paul
    Fauser, Michael
    Sattlegger, David
    Steger, Carsten
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 9584 - 9592
  • [3] Deep Learning and Its Applications in Biomedicine
    Cao, Chensi
    Liu, Feng
    Tan, Hai
    Song, Deshou
    Shu, Wenjie
    Li, Weizhong
    Zhou, Yiming
    Bo, Xiaochen
    Xie, Zhi
    [J]. GENOMICS PROTEOMICS & BIOINFORMATICS, 2018, 16 (01) : 17 - 32
  • [4] Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation
    Chen, Liang-Chieh
    Zhu, Yukun
    Papandreou, George
    Schroff, Florian
    Adam, Hartwig
    [J]. COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 : 833 - 851
  • [5] Defard Thomas, 2021, Pattern Recognition. ICPR International Workshops and Challenges. Proceedings. Lecture Notes in Computer Science (LNCS 12664), P475, DOI 10.1007/978-3-030-68799-1_35
  • [6] Graves A, 2012, STUD COMPUT INTELL, V385, P1, DOI [10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2]
  • [7] He KM, 2017, IEEE I CONF COMP VIS, P2980, DOI [10.1109/TPAMI.2018.2844175, 10.1109/ICCV.2017.322]
  • [8] Deep Residual Learning for Image Recognition
    He, Kaiming
    Zhang, Xiangyu
    Ren, Shaoqing
    Sun, Jian
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 770 - 778
  • [9] Jaeger H., 2001, 148 GERM NAT RES CTR, DOI DOI 10.1385/1-59259-208-2:013
  • [10] ImageNet Classification with Deep Convolutional Neural Networks
    Krizhevsky, Alex
    Sutskever, Ilya
    Hinton, Geoffrey E.
    [J]. COMMUNICATIONS OF THE ACM, 2017, 60 (06) : 84 - 90